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CHAPTER 1 

Introduction 

1.1 The splicing reaction  

Twenty three years ago striking research showed that in eukaryotes, genes are 

interrupted by non-coding sequences that were named introns1,2. Although introns do not 

encode any proteins, they are transcribed with the rest of the gene to form precursor 

mRNAs (pre-mRNAs)3. The introns must be precisely removed and the protein encoding 

sections, exons, need to be ligated together for translation3 (Figure 1.1A). This incredible 

discovery led to the Nobel Prize in Physiology or Medicine in 1993 for Phillip Allen 

Sharp and Richard J. Roberts. 

This process, in which the introns are removed and exons are joined to form the 

mature mRNA, is called splicing. In eukaryotes, introns contain consensus regions at 

three locations: GUAUGU at the 5’ splice, UACUAAC at branch site and YAG at the 3’ 

splice site. The splicing reaction consists of two transeaterification steps. During the first 

step of the splicing reaction, the 2’ hydroxyl group of a highly conserved adenosine in the 

branch site attacks the 5’ splice site, resulting a free 5’ exon and a lariat intermediate. In 

the second catalytic step, the 3’ hydroxyl group of the free 5’ exon attacks the 3’ splice 

site to ligate the two exons and remove the intron in a lariat form4 (Figure 1.1B).  
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Figure 1.1 Principles of RNA processing and splicing (A) Central dogma of biology in 
eukaryotic cells. Genetic information stored in DNA flows to pre-mRNA by 
transcription. In eukaryotic cells the pre-mRNA contains both exons (Encoding protein) 
and introns (Not encoding protein). For protein translation introns must be removed and 
exons must be ligated together. This process is known as splicing. (B) 2-step splicing 
reaction5,4. During the first step of the splicing reaction, the 2’ hydroxyl group of a highly 
conserved adenosine in the branch site attacks the 5’ splice site, resulting a free 5’ exon 
and a lariat intermediate. In the second catalytic step, the 3’ hydroxyl group of the free 5’ 
exon attacks the 3’ splice site to ligate the two exons and remove the intron in a lariat 
form. 
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There are three major and well-defined types of introns: group I, group II and 

nuclear introns6. The group I and Group II are different in the mechanisms of their 

catalysis, but both of them are self-splicing, which means that the introns use the RNA 

component of the intron to catalyze their own splicing reaction and no protein enzyme is 

required. In contract, the splicing of the nuclear introns requires the spliceosome as the 

catalyst7.  

In cells, splicing is an essential step in the maturation of the pre-mRNA that is 

tightly regulated and maintained4. Splicing provides a mechanism for the cell to regulate 

gene expression by changing the level of the mature mRNA of a specific protein8. 

Furthermore, eukaryotic cells can achieve vast proteomic diversity via alternative 

splicing, in which a single pre-mRNA can be processed into multiple different mature 

mRNAs. Inaccurate or inefficient splicing leads to numerous human diseases, such as 

cancers and neurodegenerative disorders9,10,11,12.  

1.2 The group II intron  

Among different types of introns, the group II intron is very interesting because it 

is self-splicing, and shares the same mechanism of reaction as nuclear intron splicing13,7 

(Figure 1.1A). The group II introns utilize RNA as the enzyme to catalyze their own 

splicing reaction. They are generally found in the bacteria, the mitochondrial or 

chloroplast genes of fungi, algae, yeast and plants. The splicing of the group II intron is 

very important for gene expression and regulation of variety of organisms7, 14.  

The secondary structure of the group II intron is comprised of six domains (DI-

DVI) 14,15 (Figure 1.2A). The Domain 1 (DI) acts as the scaffold for the folding of other 
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parts of the intron. DI offers docking sites for other domains and determines the overall 

shape of the entire intron.  It has two exon-binding sites (EBS1 and EBS2) that base-pair 

with the intron-binding sites (IBS1 and IBS2) in the 5’-exon respectively to position the 

exon and the catalytic center for the proper splicing reaction16. Domain 2 (DII) interacts 

with other regions of the intron via long-range interactions. Some of the nucleotides in 

the linker between the DII and DIII (J2/3) are highly conserved and important for the 

catalysis. Those nucleotides are components of the active site and play an important role 

in determining the specificity of the 3’ splice-site17,18. The conserved loop in domain 3 

(DIII) interacts with the intron core and catalytically crucial nucleotides in DI and 

DV18a,19. In the protein encoding group II introns, domain 4 (DIV) contains an the open 

reading frame (ORF) that encodes a protein which contributes to the intron mobility7. 

Domain 5 (DV) is the most phylogenetically conserved section of the intron, while the 

other domains are not highly conserved20. Deletion of DV is lethal for the function of this 

ribozyme, but catalysis can be rescued by adding DV in trans. These data suggest that 

this domain is vital for the catalysis of self-splicing and should be the catalytic core of the 

intron21,22,23. Domain V interacts with other parts of the intron intensively via tertiary 

interactions to position the essential components for catalysis properly. There are two 

conserved and crucial region in the domain 5: the DV bulge and the catalytic triad. The 

sequence of the DV bulge is usually AC. The catalytic triad is three consecutive 

nucleotides in the lower stem of DV, five base pairs away from the DV bulge (Figure 

1.2B). This sequence is generally AGC, but is 5’-CGC for some species24. Domain V also 

binds functionally important Mg2+ ions in the bulge and in the catalytic triad since it is 
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highly possible that the self-splicing reaction utilize the two mental-ion mechanism25,26. 

Domain 6 (DVI) contains branch site adenosine residue that attacks the 5’-splice site in 

the first step of the spicing reaction. Domain 6 (DVI) is pivotal for branch site 

recognition and fidelity of the splicing reaction27 (Figure1.1A and Figure 1.2A). 

The recent high-resolution crystal structure of the group II intron from 

Oceanobacillus ihyensis, which is a eubacterium obtained from the seabed mud near the 

coast of Japan, shows that this big ribozyme folds into a very elaborate and compact three 

dimensional structure28,29,30 (Figure 1.2C). The crystal structure agrees very well with 

previous biochemical and genetic studies, confirming most of the tertiary interactions 

predicted by other approaches31. 

Surprisingly, this giant ribozyme is modular, which means that some domains of 

the group II intron, for example DV, can be transcribed separately and reconstituted with 

other domains to perform the splicing reaction32,33. This domain modularity offers the 

opportunity for the group II intron to be developed into a variety of ribozymes34,21, 35. The 

group II intron is believed to be able to be divided into several functional fragments and 

reassembled in trans to perform catalysis. This indicates that it is highly possible that the 

group II intron is the molecular ancestor of the spliceosome, which catalyze nuclear pre-

mRNA splicing14. 
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Figure 1.2 The self-splicing group II intron (A) Secondary structure of the group II 
intron15,14. The group II intron contains 6 domains (DI-DVI). It has two exon-binding 
sites (EBS1 and EBS2) that base pair with the intron-binding sites (IBS1 and IBS2) in the 
5’-exon respectively to position the exon and the catalytic center for the proper splicing 
reaction. DVI contains the branch site. (B) Secondary structure of DV15. Highly 
conserved regions are highlighted in red. (C) Crystal structure of the group II intron with 
DI (Green, blue and purple), DII (dark yellow), DIII (Yellow), DIV (Orange) and DV 
(Red)28,29. 
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1.3 The spliceosome and its assembly 

Unlike the self-splicing group II intron, which is able to catalyze its own splicing 

reaction, the majority of introns are nuclear introns, which do not self-splice. The splicing 

reaction of nuclear pre-mRNAs must be catalyzed by the spliceosome.  The spliceosome 

is a huge dynamic ribonucleoprotein (RNP) machine, consisting of five small nuclear 

RNAs (snRNAs, U1, U2, U4, U5 and U6) and about 170 proteins in human5. Each 

spliceosomal snRNA is packed into a small nuclear ribonucleoprotein (snRNP) by 

specific binding of numerous proteins. During each round of the splicing reaction, the 

spliceosome is built anew on the pre-mRNA substrate following a highly ordered and 

stepwise pathway during where the structure of the spliceosome is constantly changing 

due to the binding and release of snRNPs36 (Figure 1.3). At first, U1 snRNP recognizes 

and binds the 5’ splice site through base -pairing. Then, U2 associates with the branch 

site, yielding the prespliceosome (complex A). Subsequently, the pre-formed U4/U6•U5 

triple snRNP binds to form the precatalytic spliceosome (complex B). During the 

activation of the spliceosome, the U1 and U4 snRNPs are destabilized from the complex 

and the resulting activated spliceosome (complex B*) is ready for the catalysis. During 

the two-step splicing reaction, only U2, U6 and U5 snRNPs remain in the spliceosome 

and comprise of the catalytic core of the machinery. The U1 and U4 leave the 

spliceosome during the activation process, so it is impossible for them to participate in 

the catalysis37. It was demonstrated that the U5 is functional dispensable for both step of 

splicing38. So it is highly possible that with the help of proteins, it is U2 and U6 that form 

the active site of the spliceosome (Figure 1.4B). The assembly of the spliceosome allows  
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Figure 1.3 Assembly pathway of the spliceosome.5 The spliceosome is a highly 
dynamic ribonucleoprotein complex, composed of 5 small nuclear RNAs (U1, U2, U4, 
U5 and U6 snRNAs) and about 80 proteins in yeast and 170 in human. Each snRNA 
binds a number of proteins and is packaged into small nuclear ribonucleoproteins 
(snRNPs). During the assembly, activation and catalysis of spliceosome, the snRNPs 
binds and disassociates following a highly ordered and regulated pathway. In the active 
spliceosome, only the U2, U6 and U5 snRNPs remain and the U5 is showed to be 
functionally dispensable for the catalysis in vitro, so it is highly possible that the U2 and 
U6 snRNAs form the catalytic core of the spliceosome and directly play a pivotal role in 
catalysis. 
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the multiple turnover reactions and the regulation of alternative splicing5. Strikingly, this 

assembly and activation pathway is conserved from yeast to humans5.  

1.4 The role of the spliceosomal proteins in splicing 

1.4.1 Spliceosomal proteins play a significant role in splicing 

The group II intron can catalyze the splicing reaction in vitro without any protein 

factors14. In contrast, protein free U2/U6 snRNAs can only catalyze a slow splicing-

related reaction very inefficiently, indicating that spliceosomal proteins play an essential 

role in catalysis39,40. During the course of evolution, some functions of the catalytic RNA 

might have been transferred to proteins. In general, higher organisms have more proteins 

in the spliceosome5. The yeast spliceosome contains about 70 proteins, while in higher 

eukaryotes there are approximately 170 proteins5. Spliceosomal protein may participate 

in stabilizing the active structure, promoting RNA folding and remodeling, coordinating 

metal ion, binding substrates and substituting catalytically or structurally important metal 

ions41. Numerous studies showed that snRNAs form at least part of the active site of the 

spliceosome and play an important role in catalysis, but it is still not clear whether 

spliceosomal proteins are components of the active site as well. There are two proteins 

that are in or near the active site of the spliceosome. One is the U2-specific SF3b14a/p14 

protein that interacts with the branch site adenosine42 and the other one is the U5-specific 

Prp8 that interacts with the 5’ splice site, the branch site and the 3’ splice site43,44,45. 

These data lead to very interesting idea that both snRNAs and spliceosomal protein 

participate in the catalysis directly46. 
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In spliceosomes of higher eukaryotes, the RNA:RNA interactions are weak, 

especially in humans5,37, and proteins help to enhance the functional structures5. The 

recognition of splice sites and the branch site involves not only base paring interaction 

between snRNAs and the pre-mRNA but a combination of interaction involving both 

snRNA and proteins47,48. This offers a mechanism for the cell to regulate splicing and 

alternative splicing, during which multiple proteins can be produced using the same pre-

mRNA8. There is a family of spliceosomal proteins named serine/arginine-rich proteins 

(SR proteins) in higher eukaryotes that perform alternative splicing regulation5. In 

contrast, in yeast, interactions between spliceosomal snRNAs themselves and the pre-

mRNA are much stronger. The definition of the splice sites and the branch sites are 

achieved by perfect base pairing between them and corresponding snRNAs, so fewer 

proteins are required for this purpose5. Additionally, alternative splicing is very rare in 

the yeast, so there are no SR proteins required for the yeast spliceosome5. This may 

explain why there are fewer proteins in the yeast spliceosome than in that of humans. The 

rearrangements of the snRNAs require the assistance of DExD/H-type RNA-dependent 

ATPases/helicases and RNA chaperones that do not hydrolyze ATP. They help to unwind 

RNA helices, anneal duplexes and stabilize the active form of the RNA complexes5,49. 

1.4.2 Spliceosomal protein Prp24 promotes spliceosomal snRNA U6 rearrangements as 

an RNA chaperone 

The spliceosomal protein Prp24 is an essential component of the U6 snRNP in 

yeast and helps U6 to remodel during assembly and catalysis of the spliceosome50. The 

details about the function and mechanism of Prp24 are still unclear. But it is well  
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Figure 1.4 The spliceosomal protein Prp24 (A) Domain structure of Prp24 from S. 
cerevisiae. Prp24 contains 4 RNA recognition motifs (RRM)51. The four RRMs are 
shown in different colors. (B) Crystal structure of the first three RRMs of Prp24.RRM1 is 
in red, RRM2 in yellow and RRM3 in blue51. (C) NMR structure of RRM2 of Prp24 with 
a fragment of U6 (GAGA) bound to it. Prp24 RRM2 is in yellow and the GAGA 
sequence in red52.  
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established that recombinant Prp24 promotes the annealing of the U4/U6 snRNA 

complex yielding U4/U6 bi-snRNP in vitro
53 (Figure 1.5C). However, recombinant Prp24 

acts more efficiently in cell extract54,53. It may be that another member of the U6 snRNP, 

the Lsm protein complex, also helps the association of U4/U6 and works together with 

Prp24 to increase efficiency55,56,57. After the formation of the U4/U6 complex, Prp24 

leaves the complex, but the Lsm proteins remain bound58,59. It has been proposed that 

Prp24 may return during the activation process of the spliceosome and help to unwind 

U4/U6 complex54,60. Prp24 does not hydrolyze ATP, so it is an RNA chaperone rather 

than an RNA heliase53.  

Prp24 form Saccharomyces cerevisiae has four RNA recognition motifs 

(RRMs)51 (Figure 1.4A). Typically, RRMs preferentially bind single strand RNA52. 

Although a high-resolution structure of the whole Prp24 is not available now, the first 

three RRMs of Prp24 have been crystallized51 (Figure 1.4B). Currently, the functions of 

each RRM are not well understood. Genetic studies indicate that RRMs 2 and 3 may 

stabilize the free U6 snRNA60. Gel shift binding assays demonstrated that RRMs 1 and 2 

are important for the high-affinity binding of U6 snRNA and RRMs 3 and 4 may have 

other functions like controlling the stoichiometry of the Prp24 binding50. Biochemical 

studies with purified U6 snRNP and binding assays with recombined Prp24 and truncated 

U6 indicated that the binding site of Prp24 on U6 may be located near the conserved 

ACAGAGA loop (Nucleotides 40-58 and Figure 1.5B) 61,50, 58. A more recent NMR study 

revealed that RRM2 binds the GAGA box in the conserved ACAGAGA loop of U6 in a 

sequence-specific fashion and RRM1 interacts with the phosphate backbone of 3’ 
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downstream GAUCA sequence via electrostatic interactions, leaving the bases available 

for base pairing (Figure 1.4C). This can disrupt the internal helix of U6 and expose the 

bases for base paring52, which is a very appealing model explaining the mechanism by 

which Prp24 promotes the annealing of the U4/U6 complex.  

1.5 The catalytic core of spliceosome: protein or RNA? 

 Similarities between the group II intron and the spliceosome support RNA based-

catalysis of the spliceosome14. First, splicing in both systems fellows the same chemistry 

and two-step reaction19 (Figure 1.1B). Both of them utilize a 2’-OH group of an 

adenosine in the branch site as the nucleophile to attack the 5’ splice site, named the 

branch mechanism. Both the nuclear introns and the majority of the group II intron are 

removed in the form of a branched lariat structure. Second, DV is similar to the 

intramolecular stem loop of U6 (U6 ISL) both in the structure and function15 (Figure 

1.5A). In both systems, the most conserved residues include a metal ion binding bulge 

(AC in DV and U80 in yeast U6 ISL) and a catalytic triad five base pairs from the bulge 

that are thought to form the active site62,63.  

These striking similarities lead to the hypothesis that the group II intron is the 

evolutionary ancestor of the spliceosome and the spliceosome is a ribozyme6,64. It has 

been hypothesized that the domain modularity of the group II intron allows it to be 

divided into small fragments that evolutes into the 5 snRNAs of the spliceosome14. It has 

been proposed that the U2/U6 snRNA is responsible for the catalysis49. The ability of the 

RNA to perform catalysis in the spliceosome was confirmed by the finding that a protein-

free minimal U2/U6 complex was able to catalyze reactions similar to both steps of 
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splicing40. Mg2+ ion concentration as well as mutations in the branch site, ACAGAGA 

loop and AGC triad affect the efficiency of the reaction39. This confirms the intrinsic 

splicing catalytic ability of the U2/U6 snRNAs. But the reactions are very slow and 

inefficient, indicating that spliceosomal proteins may also play a pivotal role in 

maintaining the correct structure, modulating the dynamics of the active site and even 

may be involved directly in the catalysis of the spliceosome65. This is consistent with the 

fact that in vivo the spliceosome requires essential protein factors for the function such as 

Prp8. It is possible that during the evolution, some functions of the RNA has been 

transferred into the spliceosomal proteins and the spliceosome may actually be a RNP 

enzyme5,49.  

1.6 Roles of the spliceosomal snRNAs U2/U6 in splicing 

U6 is highly conserved from yeast to human. There are three invariant regions: 

the U6 ISL bulge, the ACAGAGA loop and the AGC triad3. (Figure 1.5B) U2/U6 

complex form extensive base-pairing network and is the prime candidate for the catalytic 

core of the spliceosome. 

The spliceosomal snRNAs U2/U6 have pivotal structural roles. The spliceosome 

utilizes snRNAs to recognize the substrates, pre-mRNAs. In the activated spliceosome, 

U6 replaces U1 and positions the 5’ splice site via the conserved ACAGAGA loop66,67. 

The conserved loop in U5 binds and coordinates two exons through non-canonical base 

pairs68. It has been proposed that the U6 ISL and the conserved ACAGAGA loop must be  
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Figure 1.5 U2/U6 snRNA may form the catalytic core of the spliceosome (A) DV of 
the group II intron is very similar to U6 ISL of the spliceosome15. Highly conserved 
residues are highlighted in red. Red dash lines indicate base triple interactions. (B) 
Secondary structure model of the spliceosomal snRNAs U2–U6 from Saccharomyces 

cerevisiae with an intron bound.69 Highly conserved residues in U6 (ACAGAGA loop, 
AGC triad and U80) are highlighted in red. (C) U6 Structural rearrangements. U6 first 
form the U4/U6 complex. After spliceosome activation, U4 RNA is unwound from U6 
RNA. U6 then base pairs with U2 RNA to form the catalytically active form of the 
spliceosome. The Figure B is adopted from paper: Guo, Z.; Karunatilaka, K. S.; Rueda, 

D., Single-molecule analysis of protein-free U2-U6 snRNAs. Nat Struct Mol Biol 2009, 

16 (11), 1154-9. 
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in close proximity for the first step of splicing to occur. This conformation brings the 5’ 

splice site bound with ACAGAGA loop and the catalytically essential Mg2+ ion 

associated with U80 close to each other to facilitate the reaction69,70. Data from hydroxyl 

radical footprinting experiments support this hypothesis. After the first step of spicing, 

the catalytic core of the spliceosome may undergo rearrangements to position the 5’ exon 

and the 3’ splice site in the right orientation to enable the second step of splicing71 

(Figure 1.5B). 

Furthermore, it has been proposed that the spliceosomal snRNAs U2/U6 also have 

pivotal catalytic roles. Mutational studies revealed that certain regions of the U6 snRNA, 

the ACAGAGA loop and the AGC triad, are highly conserved and any mutation or 

modification in these domains will lead to a defect in the first or second step of 

splicing72,66. This suggests that these sequences may be involved directly in the catalysis. 

These regions were shown to be able to form conserved secondary structure through base 

pairing73 (i.e. Helix IB and U6 ISL), interact with specific protein factors46 (i.e. Prp8 and 

Prp24), maintain three dimensional structure via short or long range tertiary interactions15 

(i.e. base triples), and bind and position catalytic important metal ions74,75 (i.e. Mg2+).  

Like most of other ribozymes, catalysis of the spliceosome requires metal ions as 

cofactors76,77. It is highly possible that the spliceosome utilizes the two-metal ion 

mechanism in the catalysis78. Metal ions can facilitate the reaction by stabilizing the 

leaving group79. They may also play a significant structural role in stabilizing the tertiary 

interactions and co-helix stacking, neutralizing the negative charge of the RNA backbone 

to facilitate the folding of the U2/U6 complex. The metal ion bound in snRNAs and pre-
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mRNA is required for the reaction77. Biochemical and structural studies of the group II 

intron reveal that the DV bulge and the catalytic triad bind catalytically important 

divalent ions25,28. Analogous regions in U6 were also implicated to bind Mg2+ ions 

involved in structure and catalysis75,80. By using phosphorothioate backbone substitutions 

that inhibit binding of Mg2+ but permit binding of Ca2+, several phosphate groups in 

ACAGAGA loop, AGC triad and U80 bulge were shown to bind catalytically or 

structural important divalent ions75,81,74. The Mg2+ ion bound with U80 is required for the 

first step of splicing75. NMR studies also reveal the binding of Mg2+ ions in the U6 

intramolecular stem loop (U6 ISL)82. 

1.7 Structural arrangement of the U2/U6 snRNAs 

Because the spliceosome is a highly dynamic RNP machine, there are numerous 

RNA:RNA and RNA:protein rearrangements during the assembly and activation of the 

spliceosome68 (Figure 1.3 and 1.4C). U6 is introduced to the spliceosome base paired 

with the U4 snRNA. Despite of this very stable interaction between U4 and U6 snRNAs 

in yeast, the base pairs are disrupted during the remodeling and activation of the 

spliceosome as U4 dissociates from the spliceosome before the first step of the splicing 

reaction83. In the activated spliceosome, U6 is base paired with U2 to form the active 

core84. During the two-step splicing reaction, the U2/U6 complex undergoes remodeling 

to enable different chemical reactions and the release of the products85. 

 The active structure of U2/U6 has been a matter of debate over recent years. 

Genetics study in yeast revealed that the AGC triad forms base pairs with the GCU in U2 

yielding the catalytically important helix IB and the U2/U6 complex adopts a three-way 
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junction structure84. Helix IB was shown to be very important for the second step of 

splicing, so this three-way junction structure may represent the active site of the second 

step of splicing84,86. However, according to a more recent NMR study, the U2/U6 adopts 

a four-way junction structure with an extended U6 ISL69 (Figure 1.5B). In this structure, 

the ACG triad forms base pairs with CUU in U6, forming three additional base pairs to 

extend the U6 ISL. This structure is very similar to the human U2/U6 complex and DV in 

the group II intron69,87,26. The four-way junction structure provide a structure explanation 

for data from hydroxyl-radical cleavage showing that the ACAGAGA loop and the U6 

ISL are close to each other during the first step of splicing in the activated 

spliceosome70,73. This structure may be able to bring the Mg2+ binding U80 and the 5’ 

splice site close to each other, and it has been proposed that this structure is required for 

the first step of splicing73,88,70. The structure of the extended U6 ISL is mutually exclusive 

with the formation of helix IB, leading to the interesting hypothesis that each structure 

represents the conformation of one activation state of the spliceosome and intensive 

rearrangements occur between two steps of splicing70,69. The spliceosome may be in 

dynamic between different active structures and these dynamics may be very important 

for the stepwise assembly and catalysis of the spliceosome, as well as the regulation of 

the splicing73,65. 

Structural rearrangements of U6 require disruption of base pairs and secondary 

structures. The spliceosomal proteins, including RNA chaperones and DEAD-box 

proteins, may help to unwind and anneal spliceosomal snRNAs and stabilize active 

structures49,4.  
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1.8 Base triples may exist in the U2/U6 complex 

Compared to the well-characterized base pairs, there is relatively less 

understanding about how the tertiary interactions, such as base triples, maintain the native 

three-dimensional structure. A base triple forms when a single stranded nucleotide 

interacts with another nucleotide already involved in a base pair by hydrogen bonding89. 

Base triple interactions are common in RNA structures. For example, base triples were 

discovered by crystallography in yeast tRNAPhe and the group I intron by NMR90,89. In 

addition, base triple interactions in the telomerase RNA play a very important role in 

catalysis91. Recent crystal structure of the group II intron revealed that crucial base triples 

exist in the active core. It is highly possible that the triple helix locates in the active core 

of the spliceosome and is required for the reaction. 

The similarities between the self-splicing group II intron and the spliceosome 

allow the recent atomic-resolution crystal structure of the group II intron to shed light on 

elucidating the structure of the spliceosomal snRNA U2/U6 complex15. The structure and 

behavior of DV is very similar to the U6. U80 is considered the analog of the DV bulge, 

the AGC catalytic triad is conserved from the group II intron to the spliceosome and the 

ACAGAGA loop in U6 is equivalent to J2/3 in the group II intron7. The most surprising 

feature of DV found in this crystal structure is the formation of three base triples 

involving DV28,29,92. According to the crystal structure of the group II intron, in DV, 

C360 and G383 form a Watson-Crick base pair and the sugar edge of C377 from DV 

bulge interacts with Hoogsteen edge of C360 yielding the G383-C360!C377 base triple. 

G359 and U384 form a Wobble base pair and the Hoogsteen edge of G288 from J2/3 
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pairs with G359 Watson edge to form the U384!G359!G288 base triple. Using the same 

set of interactions, C289 interacts with Watson-Crick base pair C358-G385, resulting in 

the C358-G385!C289 base triple (Figure1.4A). In the group II intron, the components 

participating in the base triples are far away from each other in primary sequence, but 

they are drawn together to form the active site (figure 1.2C). Based on the similarities, it 

has been hypothesized that similar base triples exist in the U6 snRNA30,15 (Figure1.4A). 

In this model, U80 may interact with the C61-G86 base pair yielding a base triple, the 

G60!U87 and G52 in the ACAGAGA region form a triple in the middle of the triple 

helix and another one forms between the A59-U88 and an A53 within the ACAGAGA 

loop15,93. This model is very appealing because the catalytically crucial Mg2+ ion bound to 

U80 is brought close to the 5’ splice site bound with ACAGAGA loop, branch site and 

the invariant AGC triad73,70. In this model, base triples bring the components necessary 

for the first step of splicing close together and should be pivotal for the function of 

spliceosome.  

1.9 The single molecule FRET method and application in the studying of 

the spliceosome 

1.9.1 Principles of FRET  

FRET (fluorescence resonance energy transfer) is a very powerful tool to measure 

distance in the range of 10-100Å94. The energy of an exited donor is transferred to a 

nearby acceptor through dipole-dipole interactions (Figure 1.6A), causing decrease of 

donor emission and increase of acceptor emission94. The distance change of two dyes 
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(FRET donor and FRET acceptor) induces the FRET efficiency change95. By monitoring 

efficiency of FRET, the structural dynamics of biological molecules can be detected in 

real time96,97. The FRET efficiency is determined by  

! 
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6                                         (1) 

R is the distance between the two dyes and R0 is the Forster distance. FRET is 

very sensitive to distance changes close to the R0
94 (Figure 1.6B). R0 is determined by the 

following equation 
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In this equation, 
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" 2 is the orientation factor and, for free rotating dyes, this value 

is 2/3. 
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 is the quantum yield of the donor fluorescence. J is the overlap integral  
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Figure 1.6 Principles of single molecule FRET (A) The Jablonski diagram showing the 
principles of the FRET experiments. The energy of an exited donor is transferred to a 
nearby acceptor through dipole-dipole interactions, decreasing donor emission and 
increasing acceptor emission. (B) The distance between two dyes (FRET donor and 
FRET acceptor) influences the FRET efficiency. R0 is the forster distance that equal to 
the distance between the two dyes when FRET id 0.5. (C) Schematic diagram of TIRF 
single molecule98,96. Through a prism, the excitation laser hits the sample solution 
between the quartz slide and the cover slip at an angle (!) slightly larger than the critical 
TIR angle and is totally reflected. 
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between the donor emission and the acceptor absorbance. The refractive index of medium 

n is 1.4 for aqueous solutions. According to equations 1 and 2, FRET efficiency depends 

on the distance between the FRET donor and acceptor, the relative orientation of the two 

dyes and the properties of the donor and acceptor94. R0 of the FRET pair Cy3 (donor) and 

Cy5 (acceptor) is 55nM. 

Experimentally, the FRET efficiency is determined with the following equation: 

! 

E =
I
A

I
A

+ I
D

                                          (3) 

IA is the emission intensity from FRET acceptor and the ID is the emission 

intensity from FRET donor. FRET has been widely used in studying the thermodynamics 

and kinetics of biological molecule conformational changes 94,99,100. 

1.9.2 Principles of TIRF Single molecule techniques 

The development of the single molecule techniques allowed the detection of 

FRET in the single molecule level101. To decrease the background and increase the 

signal/noise ratio, we use prism-based total internal reflection fluorescence microscopy 

(TIRFM) (Figure 1.6 C) Through a prism, the excitation laser hits the sample solution 

between the quartz slide and the cover slip at an angle slightly larger than the critical TIR 

angle (!c) and the laser is totally reflected. !c is determined by 
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In this equation, nsol is the index of refraction of the sample solution and nq is the 

index of refraction of the quartz slide. The totally reflected laser beam creates an 

evanescent wave at the interface between the slide and solution that penetrates about 100 

nm into the sample solution, so only the molecules immobilized on the surface of quartz 

slide will be excited and the ones in the background solution will not. As a result, the 

excitation laser will not go deep into the solution and only the emission fluorescence 

from immobilized molecules will be detected (Figure 1.6 C). Therefore TIRFM is able to 

decrease background florescence dramatically. The florescence signals from samples are 

monitored and recorded by the objective and CCD camera98. 

TIRF single molecule FRET (smFRET) spectroscopy (Figure 1.6C) is a very 

powerful tool that enables us to uncover key structural and dynamic information 

otherwise hidden in bulk studies97,101. With the smFRET setup in our lab we can detect 

the structural dynamics of single molecules in real time (Figure 1.7C and 1.8B)102,103. 

This can provide detailed dynamic information about the conformational changes of 

biological molecules, capture transient intermediates which are difficult to detect in bulk 

solution experiments, and record conformational fluctuations at a time scale that is 

relevant for biological activity104,96. This technique also allows us to record movies of 

molecular motion and chemical activity of individual complexes98. Single molecule 

FRET has been widely used in studies on RNA and other biological molecules, such as 

folding of the group II intron, catalysis of the hairpin ribozyme and the movement of 

tRNAs in the ribosome 97,101,102,96, 105,106,107,108. 
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1.9.3 Single Molecule Experiments in studying spliceosomal snRNA U2/U6
109

 

The U2 and U6 snRNAs play a very important role in the catalysis of 

spliceosome. However, the large size and dynamic nature of the spliceosome makes it 

very challenging to study by crystallography or NMR5. Some low-resolution structures 

were solved by electron microscopy (EM)110, however, EM can only provide information 

about the overall structure and location of certain components of spliceosome101,111. So it 

is still impossible to access detailed structural information of the spliceosome. Previous 

genetic and NMR studies revealed possible structures of U2/U6, but the key structural 

dynamic information is still missing84,69,87. I used single molecule FRET (smFRET) to 

study the structural dynamics of U2/U6. 

I have developed a smFRET assay studying the structural dynamics of U2/U6 

with total internal reflection (TIR) Fluorescence spectroscopy109 (Figure 1.6C and 1.7B). 

To investigate the dynamics of U2-U6, I have incorporated Cy5 (a FRET acceptor) at the 

U6 5! end (nucleotides 45–70) and a biotin at the U6 3! end (nucleotides 76–100) for 

surface mobilization (Figure 1.7A). To assess the dynamics between the ISL and the 

ACAGAGA loop, we have deleted the U6 pentaloop and labeled U70 with Cy3 (FRET 

donor) (Figure 1.7A). There are 3 strands of RNA forming the U2-U6 complex in our 

construct (Figure 1.7A): U6-1, U6-2 and U2. In my single molecule experiments, a 

sample containing 250 nM U6-1, 500nM U6-2 and 1 "M U2 was annealed in standard 

buffer (50 mM Tris-HCl, pH 7.5, 100 mM NaCl). The solution was heated to 90°C for 45 

sec before cooling at room temperature over 20 min. The annealed biotinylated and 

fluorophore-labeled complex was then diluted to 25 - 50 pM and bound to a streptavidin- 
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Figure 1.7 Single molecule FRET study of U2/U6 (A) Labeled U2/U6 construct. This 
complex consists of 3 strands, U6-1 (purple), U6-2 (black) and U2 (blue). The 5’ of the 
U6-1 is labeled by a FRET acceptor Cy5 and the 3’ is labeled by FRET donor Cy3. The 
3’ of U6-2 is labeled by biotin for surface immobilization. (B) Principle of single 
molecule spectroscopy with TIR excitation. Single U2-U6 molecules are immobilized via 
a Biotin-Streptavidin bridge. The donor fluorophore (D) is excited at 532 nm, and the 
donor and acceptor (A) fluorescence is collected through the objective. (C) Dwell time 
analysis of single molecule data. Dwell times of a single molecule staying in each state 
are calculated according to the single molecule trajectories. (D) Dwell time distributions 
in the N (top) and I (bottom) conformations in 40 mM Mg2+. The distributions are fit to 
single exponential decays to yield the pseudo-first-order rates k1 and k!1, respectively. 
The Figure is adopted from paper: Guo, Z.; Karunatilaka, K. S.; Rueda, D., Single-

molecule analysis of protein-free U2-U6 snRNAs. Nat Struct Mol Biol 2009, 16 (11), 

1154-9. 
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coated quartz slide surface via biotin-streptavidin interaction to generate a surface density 

of ~0.1 molecules per !m2. The donor (ID) and acceptor (IA) fluorescence signals of 

optically resolved single molecules (characterized by single-step photobleaching) were 

detected with a total internal reflection fluorescence microscope (Home-built) as 

described98,106. The donor and acceptor emission were separated using appropriate 

dichroic mirrors (610DCXR, Chroma, Rockingham, VT), and detected as two side-by-

side images on a back-illuminated electron-multiplied CCD camera (Andor I-Xon+, 

South Windsor, CT). The individual donor (ID) and acceptor (IA) intensities were 

measured by integration of their relative spot intensities. The donor (ID) and acceptor (IA) 

fluorescence signals of optically resolved single molecules were used to calculate the 

FRET ratio as IA/(IA + ID), and followed in real time for each molecule. The resulting 

FRET time trajectories are essentially recorded movies of the molecular motion of the 

U2/U6 complex, which enable us to study its conformational dynamics. Measurements 

were performed under variable magnesium concentrations (0 - 100 mM MgCl2) at 25°C, 

with an oxygen scavenging system consisting of 10% (wt /vol) glucose, 1% (vol / vol) 2-

mercaptoethanol, 750 !g/ml glucose oxidase, and 90 !g/ml catalase to reduce 

photobleaching. Dwell times of a single molecule staying in each state were calculated in 

Matlab with single molecule tine trajectories. Dwell time distributions are plotted and fit 

to single exponential decays to yield the pseudo-first-order rates constants (k1, k"1, k2, k-

2). The smFRET histograms constructed with more than 100 molecules, (Figure 1.7C,D). 
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2.1 Introduction 

Splicing is an essential step in eukaryotic precursor messenger RNA (pre-mRNA) 

maturation
1
. Single nucleotide errors can be lethal to the cell, and anomalous pre-mRNA 

splicing has been linked to many cancers and neurodegenerative disorders
2,3,4

. The 

spliceosome is a multi-megadalton protein–RNA complex consisting of five small 

nuclear RNAs (snRNAs U1, U2, U4, U5 and U6) and more than 150 proteins
5,6

. It 

catalyzes splicing and is a critical center for the regulation of alternative splicing
7
. During 

spliceosomal assembly and catalysis, snRNAs associate with proteins to form 

ribonucleoprotein complexes (snRNPs), which bind to and dissociate from the pre-

mRNA substrate in a highly orchestrated process yielding catalytically competent 

spliceosomes
8
. Splicing consists of two sequential transesterification reactions that 

produce a free lariat intron and ligate two exons into a mature mRNA.  

Only U2, U5 and U6 are present in active spliceosomes, but evidence suggests that 

U2 and U6 are directly involved in the first catalytic step. U2 and U6 form an extensive 

base pair network and directly bind the 5! splice site and the branch point, positioning 

them for the first reaction (Fig. 2.1A)
9,10

. A highly conserved element of U5 is  
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protein-free U2-U6 snRNAs. Nat Struct Mol Biol 2009, 16 (11), 1154-9. 
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dispensable for the first splicing step in vitro and in mammalian cell extracts
12,13

. 

Splicing-related catalysis has been reported in vitro using a protein-free human U2–U6 

complex
14,15

. Parallels between the structure and catalytic mechanism of the spliceosome 

and self-splicing group II introns support the idea of a common molecular ancestor and 

suggest that the spliceosome is a ribozyme
16,17,18

. However, recent crystal structures of a 

Prp8 fragment (a component of U5) suggest that both protein and RNA are involved in 

catalysis
19

. !

The U2–U6 structure has been a matter of debate in recent years. Early in vivo 

genetic studies support a three-helix structure in which the highly conserved AGC triad in 

U6 forms three base pairs with U2 (Fig. 2.1b)
20

. Believed to form during catalytic 

activation, this structure has been proposed to be a requirement for both splicing 

steps
21,22

. 

 More recently, NMR studies have shown that in the absence of Mg
2+

 ions and 

proteins, the AGC triad forms intramolecular base pairs that extend the U6 internal stem 

loop (ISL, Fig. 2.1a), creating a four-helix structure
11,23

. To reconcile these two 

structures, it has been postulated that each corresponds to a different spliceosomal 

activation state
24

, yet any conformational change has remained undefined. To address this 

issue, we have used fluorescence resonance energy transfer (FRET) and single-molecule 

fluorescence to characterize the structure and dynamics of a protein-free U2–U6 complex 

from yeast. Our results show that Mg
2+

 ions trigger a large amplitude conformational 

change that separates the ISL and the ACAGAGA loop (Fig. 2.1). This two-step 

conformational change contains a previously unobserved obligatory intermediate, where 
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only the first step is strongly Mg
2+

-dependent. Mutations in the highly conserved AGC 

triad show that helix IB forms only in the lowest FRET conformation, and correlate the 

observed structural dynamics in vitro with previously published mutations linked to 

activation of the second step in vivo. 

2.2 Materials and methods 

2.2.1 RNA Preparations and Purification.  

There are 3 strands of RNA forming the U2-U6 complex in our construct (Figure 2.1D): 

U6-1, U6-2 and U2. All the RNA samples were purchased from Keck Foundation 

Biotechnology Resource Laboratory at Yale University School of Medicine (New Haven, 

CT). These RNA samples have 2’OH protection groups that are removed by a 2’OH 

deprotection reaction according to the manufacture’s protocol. The deprotected RNA was 

purified by denaturing gel electrophoresis (20% polyacrylamide and 8 M urea) and 

diffusion elution with elution buffer (0.5 M NH4OAc and 0.1 mM EDTA) at 4˚C 

overnight. This was followed by a chloroform extraction, ethanol precipitation, and C8 

reverse-phase HPLC purification. The 5’ end of U6-1 is labeled with Cy5 during the 

RNA synthesis and a C7 amino linker is attached to 3’ end, enabling the labeling of a 

Cy3 to 3’ end for our FRET studies. During the 3’-labeling reaction, the Cy5-labeled 

RNA was mixed with Cy3 dye (GE Healthcare) in labeling buffer (100 mM Sodium 

tetraborate, pH 8.5). This reaction mixture was kept overnight at room temperature. The 

doubly-labeled samples were purified by ethanol precipitation and reverse phase HPLC. 

RNA concentrations were measured by UV-Vis absorbance at 260 nm. 
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2.2.2 Steady-State FRET.  

Steady-state FRET measurements of the double-labeled U2-U6 complex were carried out 

in a spectrofluorometer (Cary Eclipse, Varian Inc., Palo Alto, CA). Cy3 was excited at 

550nm (10 nm bandwidth) and Cy3 and Cy5 emission intensities (ICy3 and ICy5) were 

measured at 565 nm and 665 nm (5 nm bandwidth), respectively. Relative FRET 

efficiencies were calculated as FRET = ICy5/(ICy3 + ICy5). A 130 µL solution with 250 nM 

U6-1, 500 nM U6-2 and 1 µM U2 in standard buffer (50 mM Tris-HCl, pH 7.5, 100mM 

NaCl and 25mM DTT) was first denatured by heating at 90 ˚C for 2 min and then slowly 

annealed at room temperature for 20 minutes. After this RNA-only solution was scanned, 

10-µL aliquots of varying concentrations of MgCl2 were manually added to the RNA. 

After equilibration, the final FRET value was measured. The Mg
2+

 dissociation constant 

(KMg) and cooperativity coefficients (n) were obtained by plotting FRET as a function of 

Mg
2+ 

concentration and fitting to the modified Hill equation:  

! 

FRET = FRET
0
" FRET

0
" FRET#( ) [Mg2+

]
n

KM

n + [Mg2+
]
n( )( ) 

2.2.3 Single-molecule FRET. 

 The three RNA strands (Fig. 2.1D) were annealed at 1 !M concentration in standard 

buffer (50 mM Tris-HCl, pH 7.5, 100 mM NaCl) and variable [Mg
2+

]. A 10 µL solution 

was heated to 90°C for 45 sec before cooling at room temperature over 20 min. The 

annealed biotinylated and fluorophore-labeled complex was diluted to 25 - 50 pM 

concentration and bound to a streptavidin-coated quartz slide surface via the biotin-

streptavidin bridge to generate a surface density of ~0.1 molecules/!m
2
. The donor 
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fluorophore was excited in a home-built total internal reflection microscopy by a laser 

(532 nm, 3 mW, Spectra-Physics Excelsior, Mountain View, CA). The donor and 

acceptor emission were separated using appropriate dichroic mirrors (610DCXR, 

Chroma, Rockingham, VT), and detected as two side-by-side images on a back-

illuminated electron-multiplied CCD camera (Andor I-Xon, South Windsor, CT).  The 

individual donor (ID) and acceptor (IA) intensities were measured by integration of their 

relative spot intensities. The donor (ID) and acceptor (IA) fluorescence signals of optically 

resolved single molecules (characterized by single-step photobleaching) were detected 

used to calculate the FRET ratio as IA/(IA + ID), and followed in real time for each 

molecule. The resulting FRET time trajectories are essentially recorded movies of the 

molecular motion of the U2/U6 complex, which enable us to study its conformational 

dynamics. Measurements were performed under variable [Mg
2+

] (0 - 100 mM) at 22°C, 

with an oxygen scavenging system consisting of 10% (wt/vol) glucose, 2% (vol/vol) 2-

mercaptoethanol, 750 !g/ml glucose oxidase, and 90 !g/ml catalase to reduce 

photobleaching, with trolox (Sigma). The dwell times of each folding event were 

calculated, histograms constructed, and the folding rate constants determined.  

2.2.4 Fluoresce Based Gel Mobility Assay  

15% non-denaturing polyacrylamide (29:1acrylamide: bisacrylamide ratio) gel 

electrophoresis was performed in 20 mM NaOAc, 20 mM Tris-acetic acid (pH6.5) and 40 

mM Mg(OAc)2 using low-fluorescence glass plates. 10 pmol doubly labeled RNA 

samples were heated at 90 °C for 45 seconds and cooled down to room temperature in 

standard buffer. Acrylamide gel was equilibrated for 15 minutes at 4 °C before loading. 
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Samples were loaded on the gel, and a constant electric field (6 V/cm) was immediately 

applied. After electrophoresis for 8 hrs at 4 °C, the gel was scanned in a Typhoon 9210 

Variable Model Imager (GE Healthcare), and analyzed with ImageQuant software 

(Amershan Bioscience). For color calibration purposes, RNA labeled with only Cy3 and 

Cy5 was used. The Fluorsep software (Amershan Bioscience) was used to overlay the 

Cy3 and Cy5 gel images. Cy3 and Cy5 emissions appear as green and red color, 

respectively. In this gel, Lane 1: 10 nmol of fluorophore labeled U6-1 only. The red 

(high FRET) RNA migrates as a single band indicating its purity.  Lane 2: 10 nmol of 

fluorophore labeled U6-1 and 20 nmol of biotinylated U6-2. The red (high FRET) RNA 

migrates as a single band indicating that these two RNAs alone do not from a stable U6-

1/U6-2 complex.  Lane 3: 10 nmol of fluorophore labeled U6-1 and 40 nmol of U2. The 

band migrates as in lane 1 indicating that these two RNAs alone do not from a stable U6-

1/U2 complex.  Lane 4: 10 nmol of fluorophore labeled U6-1, 20 nmol of biotinylated 

U6-2 and 40 nmol of U2. A yellow (low-mid FRET) slow migrating band clearly shows 

the formation of the ternary U6-1/U6-2/U2 complex.  Lane 5: 10 nmol of fluorophore 

labeled triad mutant U6-1 and 20 nmol of biotinylated triad mutant U6-2. The red (high 

FRET) RNA migrates as a single band indicating that these two RNAs alone do not from 

a stable U6-1/U6-2 complex. Lane 6: 10 nmol of fluorophore labeled triad U6-1 and 40 

nmol of U2. The band migrates as in lane 1 indicating that these two RNAs alone do not 

from a stable U6-1/U2 complex. Lane 7: 10 nmol of fluorophore labeled triad mutant 

U6-1, 20 nmol of biotinylated triad mutant U6-2 and 40 nmol of U2. An orange (mid 

FRET) slow migrating band clearly shows the formation of the ternary triad mutant U6-
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1/U6-2/U2 complex. Lane 8: 10 nmol of fluorophore labeled single mutant U6-1 and 20 

nmol of biotinylated U6-2. The red (high FRET) RNA migrates as a single band 

indicating that these two RNAs alone do not from a stable U6-1/U6-2 complex. Lane 9: 

10 nmol of fluorophore labeled single mutant U6-1 and 40 nmol of U2. The band 

migrates as in lane 1 indicating that these two RNAs alone do not from a stable U6-1/U2 

complex. Lane 10: 10 nmol of fluorophore labeled single mutant U6-1, 20 nmol of 

biotinylated U6-2 and 40 nmol of U2. A yellow-orange (low-mid FRET) slow migrating 

band clearly shows the formation of the ternary single mutant U6-1/U6-2/U2 complex. 

Lane 11: 10 nmol of fluorophore labeled single mutant U6-1, 20 nmol of biotinylated 

U6-2 and 40 nmol of double mutant U2. A yellow-orange (low-mid FRET) slow 

migrating band clearly shows the formation of the ternary double mutant U6-1/U6-2/U2 

complex. 
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Table 1 Sequences of RNA used in chapter 2 

WT U6-1 5’-AUA CAG AGA UGA UCA GCA GUU CCC CU-3’ 

WT U6-2 5’-AGG AUG AAC CGU UUU ACA AAG AGA UUU AU-3’ 

WT U2 5’-AUC UCU UUG CCU UUU GGC UUA GAU CAA GUG UAG 

UAU-3’ 

Six-fold mutant 

U6-1 

5’-AUA CAG AGA UGA UCU UGA GUU CCC CU-3’ 

Six-fold mutant 

U6-2 

5’-AGG AUG AAC CCG AUU ACA AAG AGA UUU AU-3’ 

A59C U6-1 5’-AUA CAG AGA UGA UCC GCA GUU CCC CU-3’ 

U23G U2 5’-AUC UCU UUG CCU UUU GGC GUA GAU CAA GUG UAG 

UAU-3’ 

A91G U6-2 5’-AGG AUG AAC CGU UUG ACA AAG AGA UUU AU-3’ 

Full length control 

U6 

5’-AUA CAG AGA UGA UCA GCA GUU CCC CdTG CAU 

AAG GAU GAA CCG UUU UAC AAA GAG AUU UAU-3’ 
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2.3 Results and discussion 

 2.3.1 Mg
2+

 induces a large amplitude conformational change  

We have developed a labeling strategy that enables us to study the U2–U6 

conformational dynamics by FRET and single-molecule fluorescence (Fig. 2.1C). We 

have incorporated Cy5 (a FRET acceptor) at the U6 5! end (nucleotides 45–70) and a 

biotin at the U6 3! end (nucleotides 76–100) for surface mobilization. To assess the 

dynamics between the ISL and the ACAGAGA loop, we have deleted the U6 pentaloop 

(Fig. 2.1A, outlined and 2.1D) and labeled U70 with Cy3 (FRET donor). To confirm 

three-strand complex formation, we used nondenaturing gel electrophoresis (Fig. 2.2A; 

single bands in lanes 4, 7, 10 and 11 are reliable indicators of homogeneity), fluorescence 

and single-molecule microscopy (Fig. 2.2B-E). The four- and three-helix structures are 

expected to yield high and low FRET ratios, respectively
11,20

. 

We first characterized the folding behavior of our fluorophore-labeled U2–U6 

complex using bulk solution FRET (Fig. 2.1E,F). In the presence and absence of Mg
2+

 in 

standard buffer (50 mM Tris-HCl, pH 7.5, 100 mM NaCl). In the absence of Mg
2+ 

(black 

line, Fig. 2.1E), the donor intensity is lower than the acceptor density (FRET = 0.64), 

indicating that U2–U6 adopts an initial conformation in which the ACAGAGA loop and 

the ISL are in close proximity, as suggested by the four-helix structure
11

. In 40 mM 

MgCl2, the donor intensity increases and the acceptor intensity decreases (FRET = 0.19), 

indicating that Mg
2+

 ions induce a conformational change separating the ACAGAGA 

loop and the ISL, as expected for the three-helix struture
20

. Titrating the observed FRET  
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Figure 2.2. Formation of the fluorophore-labeled U2/U6 complex (A) monitored by 

non-denaturing gel electrophoresis with fluorescence detection. Each sample was 

prepared as in the FRET experiments. (B, C, D, E) smFRET control experiments testing 

how the heterogeneity affects the single molecule measurements. (B) Slide with only Cy3 

and Cy5 labeled U6-1. Without biotin, U6-1 alone cannot be immobilized on the slide 

surface, and no molecules are observed. (C) Slide with U6-1 and U6-2. There are only 

very few molecules on the slide because the U6-1/U6-2 complex alone is not stable, 

consistent with the non-denaturing gel electrophoresis. The surface density of 

immobilized molecules is 20-fold lower than that of the 3-strand complex. (D) Slide with 

U6-1 and U2. No molecule is immobilized on the slide surface because there is no biotin 

present. (E) Slide with U6-1, U6-2 and U2. The 3-strand complex can form stably, and it 

can be immobilized on the slide surface efficiently. The buffer conditions for all these 

experiments are 50 mM Tris-HCl, pH 7.5, 10 mM MgCl2, 100 mM NaCl. (F) Ensemble-

averaged magnesium titration of the fluorophore labeled three-strand complex (black), 

U6-1 alone (blue), U6-1/U2 (red), and U6-1/U6-2 (green). Only the three-strand complex 

exhibits a significant Mg
2+

 dependent conformational change. These data, together with 

B-E show that the observed conformational dynamics reflect only the behavior of the 

three-strand complex.  

The Figure is adopted from paper: Guo, Z.; Karunatilaka, K. S.; Rueda, D., Single-

molecule analysis of protein-free U2-U6 snRNAs. Nat Struct Mol Biol 2009, 16 (11), 

1154-9. 
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!
efficiency as a function of [Mg

2+
] (Fig. 2.1F) reveals a cooperative decrease in FRET 

efficiency with increasing [Mg
2+

]. This conformational change occurs with a dissociation 

constant KMg = 3.3 ± 0.7 mM, near the physiological range (~1 mM), and a cooperativity 

coefficient n = 2.2 ± 0.2. These data indicate that U2–U6 acts as a Mg
2+

-dependent 

conformational switch. The high cooperativity coefficient probably reflects the presence 

of multiple Mg
2+

 binding sites, in agreement with previous studies that have linked 

several coordination sites near the highly conserved base U80 in U6, the ACG triad and 

the ACAGAGA loop (Fig. 2.1A) with spliceosomal activation
25-26

. !

2.3.2 Single-molecule FRET reveals three dynamic conformations  

Single-molecule FRET (smFRET) uncovers key structural and dynamic 

information otherwise hidden in ensemble-averaged experiments
27

. Here, we have used 

smFRET to elucidate the folding reaction of the U2–U6 complex (Fig. 2.3A). 

Characteristic FRET time trajectories of surface-immobilized U2–U6 in 10 and 100 mM 

Mg
2+

 are shown in Figure 2.3B,C, respectively. The observed FRET efficiency jumps 

randomly between three different values (~0.6, ~0.4 and ~0.2), revealing the presence of 

at least three distinct conformational states in dynamic equilibrium. On the basis of their 

FRET ratios, we initially assigned the high FRET state to the four-helix structure (N)
11

, 

the low FRET state to the three-helix structure (G) and the mid-FRET state to a 

previously unobserved folding intermediate (I, Fig. 2.1C).  

FRET histograms from the trajectories (Fig. 2.3B,C, right panels) reveal that at 

high [Mg
2+

] (>10 mM), I and G are the predominant states, and N is only transiently  
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Figure 2.3 Single-molecule FRET reveals a three-state folding pathway (A) 

Schematic diagram of the single-molecule experiments. The RNA complex is surface 

immobilized via a biotin-streptavidin bridge. The fluorophores are excited in a prism-

based total internal reflection microscope. Fluorescence is collected by the objective and 

monitored with a CCD camera. (B and C). Single-molecule FRET time trajectories in 10 

and 100 mM Mg
2+

, respectively. The different conformations (N, I and G) can be 

identified by their FRET ratios (~0.6, ~0.4 and ~0.2, respectively) in the corresponding 

FRET histograms. (D) Mg
2+

 ions modulate the stability of the U2–U6 conformations. 

Each panel corresponds to an average smFRET histogram from >100 single-molecule 

trajectories as a function of [Mg
2+

], as indicated. In the absence of Mg
2+

, a high FRET 

state predominates the histogram. As [Mg
2+

] increases, the 0.4 and 0.2 FRET states 

become more populated. (E) Comparison of the Mg
2+

 titration in ensemble-averaged and 

singlemolecule experiments. The calculated average FRET values from the single-

molecule histograms in Figure 2.3D (circles) overlay within error on the fit of the 

ensemble averaged measurements from Figure 2.1F (line). The error bars stem from the 

standard deviation of the single-molecule FRET distributions. The initial and final FRET 

values of the fit had to be adjusted because the filters used in the two experiments are 

different yielding somewhat different initial and final FRET values, but the KMg and the 

Hill coefficient n were held constant to their values in Figure 2.1F. This results shows 

that the surface immobilization scheme does not significantly affect the U2/U6 structural 

dynamics. The buffer conditions for these smFRET experiments are 50 mM Tris-HCl, pH 

7.5, 100 mM NaCl, and for bulk titration 50 mM Tris-HCl, pH 7.5, 100mM NaCl and 

25mM DTT. (F) Single-molecule time trajectory in the absence of Mg
2+

. The trace is 

smoothed with a running 5-point average. The FRET value oscillates randomly between 

1.0 and 0.5 without the presence of well-defined conformational states. The observed 

oscillations are much wider than our experimental noise indicating the presence of 

dynamics faster than our 33 ms time resolution. These dynamics result in the broad 

distributions in Figure 2.3D. A possible explanation is that the 5’end of U6 does not base 

pair stably with U2 in the absence of Mg
2+

. The buffer condition for this experiment is 50 

mM Tris-HCl, pH 7.5, 0 mM MgCl2, 100 mM NaCl. The Figure is adopted from paper: 

Guo, Z.; Karunatilaka, K. S.; Rueda, D., Single-molecule analysis of protein-free U2-U6 

snRNAs. Nat Struct Mol Biol 2009, 16 (11), 1154-9. 
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populated. The high FRET state becomes more apparent at [Mg
2+

] < 10 mM (Fig. 2.3D).  

Of the >3,200 transitions observed, only 40 (1.2%) go directly from N to G. In these 

instances, the dwell time in the I state may be shorter than our 33-ms time resolution, 

which is direct evidence that I is an obligatory intermediate. Based on our single- 

molecule measurements, we propose a two-step folding pathway for the U2–U6 complex 

(Fig. 2.1C).  

2.3.3 Mg
2+

 ions influence the U2–U6 structural dynamics  

To assess the effect of Mg
2+

 ions on the U2–U6 folding dynamics, we measured 

smFRET histograms between 0 and 40 mM Mg
2+

 (Fig. 2.3D). These histograms, each 

built from more than 100 trajectories, show how Mg
2+

 ions modulate the folding 

dynamics of the U2–U6 complex. In the absence of Mg
2+

 (top panel), most molecules 

exist in the high FRET state, and only a small fraction adopts the intermediate FRET 

conformation. Increasing the [Mg
2+

] to 5 mM (second panel) shifts some of the high 

FRET population into the intermediate FRET population. In 10 mM Mg
2+

 or higher (Fig. 

2.3D, bottom panels), the high FRET state becomes more transiently populated and 

almost disappears. Only brief excursions to the high FRET state are observed at these 

concentrations, and the U2–U6 molecules spend most of their time in the intermediate 

and low FRET states. The average FRET values of the single-molecule results overlay 

the ensemble-averaged results within the calculated s.d. (Fig. 2.3E), indicating that 

surface immobilization does not appreciably affect the U2–U6 folding dynamics.  

Notably, the high FRET peak gradually shifts from ~0.95 at 0 mM Mg
2+

 to ~0.6 

at 40 mM Mg
2+

. Such smooth changes in FRET distributions are usually an indication 
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that multiple dynamic states are present in solution but their dynamics are faster than the 

available time resolution
28

. This idea is further corroborated by the broad distributions 

with flat shoulders at 0 and 5 mM Mg
2+

 (Fig. 2.3D). A similar behavior has been reported 

for the Diels-Alderase ribozyme
29

. It is possible that in low [Mg
2+

], the AU-rich helix III 

is partially unwound (Fig. 2.1A and Fig. 2.3F), yielding the 0.95 FRET value. As [Mg
2+

] 

increases, helix III forms and effectively distances the U6 5! end from the ISL, yielding 

the 0.6 FRET value. The highly dynamic time trajectories observed below 5 mM Mg
2+

 

(Fig. 2.3F), as well as previously reported Mg2+ binding sites in this region
25,26

, support 

this hypothesis.  

2.3.4 Dwell time analysis determines the rates of folding  

We have determined the folding rate constants k1, k–1, k2 and k–2 (Fig. 2.1C) for 

[Mg
2+

] = 5–100 mM. Below this range, dwell times were unidentifiable owing to the 

highly dynamic time trajectories (see above). At 40 mM Mg
2+

, the dwell time 

distributions can be readily fitted with single exponential decays to yield pseudo-first-

order rate constants (Fig. 2.4A and Fig. 2.5). Transitions out of the I state were divided 

into two categories depending on their final state: those that returned to N were used to 

determine k–1, whereas those that moved on to G were used to determine k2
17

. The 

resulting rate constants and their Mg
2+

 dependence are shown in Figure 2.4B.  

These data explain how Mg
2+

 ions affect the U2–U6 folding dynamics and how to 

interpret them in terms of a folding potential energy surface comprising three minima (N,  
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Figure 2.4 Mg2+ dependence of the folding rate constants for the U2–U6 complex 

(A) Dwell time distributions in the N (top) and I (bottom) conformations in 40 mM Mg
2+

. 

The distributions are fit to single exponential decays to yield the pseudo-first-order rates 

k1 and k!1, respectively. (B) Mg
2+

 dependence of k1 and k!1 (top) and k2 and k!2 (bottom). 

(C) Schematic diagram of the folding potential energy surface for the protein-free U2–U6 

spliceosomal complex from yeast. In the absence of Mg
2+

 (black), the high FRET state 

(N) is the most stable. On addition of Mg
2+

 ions (green), the previously unobserved mid-

FRET conformation (I) becomes more stable, whereas N and the first transition state (‡1) 

remain approximately constant. This is shown by the large decrease in k!1 but not in k1. 

Meanwhile, the low FRET state (G) and the second transition state (‡2) are also similarly 

stabilized, as shown by the mild Mg
2+

 dependence of k2 and k!2. The Figure is adopted 

from paper: Guo, Z.; Karunatilaka, K. S.; Rueda, D., Single-molecule analysis of protein-

free U2-U6 snRNAs. Nat Struct Mol Biol 2009, 16 (11), 1154-9. 
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Figure 2.5 Dwell time analysis for the rate constants k1 (column1), k-1 (column2), k2 

(column3) and k-2 (column4) as a function of [Mg
2+

]. The pseudo-first order rates were 

determined by fitting the dwell time distributions to single exponential decays (black 

lines). The resulting values were used in Fig 2.4B. The buffer conditions for these 

experiments are 50 mM Tris-HCl, pH 7.5, 100 mM NaCl and variable [Mg
2+

]. The 

Figure is adopted from paper: Guo, Z.; Karunatilaka, K. S.; Rueda, D., Single-molecule 

analysis of protein-free U2-U6 snRNAs. Nat Struct Mol Biol 2009, 16 (11), 1154-9. 
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I and G) separated by two transition states (Fig. 2.4C). Between 5 and 100 mM Mg
2+

, k1 

decreases 3-fold whereas k!1 decreases 18-fold. The large decrease in k!1 indicates that  

Mg
2+

 ions preferentially stabilize I relative to the first transition state, leaving N 

approximately unchanged. Between 5 and 100 mM Mg
2+

, k2 and k!2 decrease only four- 

and three-fold, respectively, indicating that I, G and the second transition state are 

similarly stabilized by Mg
2+

 ions.  

2.3.5 Helix IB forms in the low FRET state  

To test for the presence of helix IB in the low FRET conformation (G), we 

designed a six-fold mutant that prevents helix IB formation while maintaining the 

stability of the extended ISL (Fig. 2.6A), because the identity of junction-closing base 

pairs can affect the junction stability and dynamics
30

. An ensemble-averaged Mg
2+

 

titration shows that these mutations do not affect KMg, but the observed FRET ratio at 

high [Mg
2+

] is higher than that of the wild type (Fig. 2.7A). The absence of the 0.2 FRET 

state in the single-molecule trajectories and corresponding FRET histogram (Fig. 2.6A) 

support our initial assignments. Dwell time analysis of this mutant shows that k1 and k!1 

are within two-fold of the wild-type values (Fig. 2.7B), showing that this mutation does 

not affect the first step of folding.  

Helix IB formation can be favored by the U6 mutation A91G, which extends helix 

II by one base pair and stabilizes it relative to stem I in U2 (Figs. 2.1A and 2.6B and J. 

Halsig, D.G. Sashital and S.E. Butcher, University of Wisconsin, Madison, personal 

communication). The trajectories clearly show that excursions to the low FRET state last  
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Figure 2.6 Mutations in the AGC triad (red) show that helix IB forms only in the 

low FRET state (A) Single-molecule trajectory of a six-fold mutant in the U6 snRNA 

with a base-flipped AGC triad that prevents formation of helix IB. The low FRET state is 

never observed in the trajectories or in the corresponding FRET histogram (right). (B) 

Single-molecule trajectory of an A91G mutant in the U6 snRNA previously shown to 

stabilize the formation of helix IB. Excursions to the low FRET state last longer, and the 

corresponding peak in the FRET histogram (right) is larger. (C) Single-molecule 

trajectory of an A59C mutant in the U6 snRNA that blocks the second step of splicing in 

vivo. Neither the 0.4 nor 0.2 FRET states are observed in the corresponding trajectories. 

The FRET histogram (right) reveals the presence of a new state with intermediate FRET 

(~0.3). (D) A U23G mutation in the U2 snRNA rescues formation of helix IB in the 

presence of the U6 A59C mutation. The single-molecule trajectories and corresponding 

histograms show the recovery of the 0.4–0.2 FRET dynamics in vitro. All measured in 50 

mM Tris-HCl, pH 7.5, 100 mM NaCl and 40 mM MgCl2. The structures on the left are 

intended only to show the location of the mutations. The Figure is adopted from paper: 

Guo, Z.; Karunatilaka, K. S.; Rueda, D., Single-molecule analysis of protein-free U2-U6 

snRNAs. Nat Struct Mol Biol 2009, 16 (11), 1154-9. 
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Figure 2.7 Six fold flipped-triad mutations and A59C mutation (A) Ensemble-

averaged magnesium titration of the fluorophore labeled U2/U6 complex with the six fold 

flipped-triad mutations (red). A fit to the modified Hill equation yields a dissociation 

constant KMg = 4.8 ± 0.5 mM, similar to the wild type (black). However, the observed 

FRET ratio at high [Mg
2+

] is significantly higher than the wild type (black), in agreement 

with the single-molecule data for this mutant. This data supports that Helix IB only forms 

in the low FRET state (G). (B, C, D) Dwell time analysis for the rate constants of triad 

mutant, single mutant and A91G mutant. (B) Dwell time analysis for the rate constants 

k1, k-1 of triad mutant. The values are comparable to that of the wild-type U2/U6 

complex, suggesting that the six-fold mutation does not affect the transition between N 

and I. (C) Dwell time analysis for the rate constants k1, k-1 of A59C single mutant. The 

values are comparable to that of the wild-type U2/U6 complex, suggesting that A59C 

mutation does not affect the transition between the N and I. (D) Dwell time analysis for 

the rate constants k2, k-2 of A91G mutant. The value of k-2 is comparable to that of wild 

type, while the k2 is 60-fold larger than that of wild type. This indicates that this mutation 

favors the formation of G. The Figure is adopted from paper: Guo, Z.; Karunatilaka, K. 

S.; Rueda, D., Single-molecule analysis of protein-free U2-U6 snRNAs. Nat Struct Mol 

Biol 2009, 16 (11), 1154-9. 

!
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longer in the mutant than in the wild type, and the corresponding smFRET histogram 

reveals a larger low FRET peak for the mutant than for the wild type. Dwell-time analysis  

shows that k1, k!1 and k!2 are very similar to the folding rate constants for the wild type, 

but k2 is 60-fold faster, in agreement with these observations (Fig. 2.7C,D).  

Taken together, these results show that the second folding step corresponds to a 

spontaneous intramolecular junction migration from I to G. The viability of the six-fold 

mutant has never been tested in vivo, but mutations that block helix IB formation can be 

lethal for the cell
21,20

, thus raising the interesting possibility that the observed dynamics in 

vitro are linked to spliceosomal activation in vivo.  

2.3.6 The structural dynamics correlate with splicing activation  

To test the role of the observed dynamics in spliceosomal activation, we used 

previously published mutations. The U6 mutation A59C (Fig. 2.6C) prevents helix IB 

formation and blocks the spliceosome between the two splicing steps in vivo
21

. The U2 

compensatory mutation U23G (Fig. 2.6D) restores base pairing in helix IB and rescues 

the second step of splicing.  

We have tested the effect of these mutations on the structural dynamics of U2–U6 

in 40 mM Mg
2+

. The trajectories for A59C show an effect on both the junction structure 

and its dynamics (Fig. 2.6C). The low FRET states (I and G) disappear, and a new state 

(~0.30 FRET) replaces them. Two possible scenarios explain these results. The junction 

mutation may disrupt the junction structure, trapping it in an intermediate conformation 

with the U6 5" end pointing in an intermediate direction, explaining the observed FRET 

ratio. Alternatively, the mutation may accelerate the junction dynamics faster than our 
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time resolution; making the two FRET states appear as a single state with an average 

FRET value between 0.2 and 0.4.  

The trajectories for the compensatory mutation clearly show the rescue of the low 

FRET state and the structural dynamics (Fig. 2.6D), in agreement with the in vivo 

experiments. Notably, the FRET histogram shows that the intermediate-state FRET ratio 

is 0.32, indicating that the disrupted junction structure, rather than the averaged fast 

dynamics, is the most probable explanation for the A59C mutant intermediate FRET 

ratio.  

These results link the observed structural dynamics of the U2–U6 complex to a 

conformational rearrangement before the second splicing step, suggesting that junction 

dynamics may contribute to successful splicing in vivo.  

2.4 Conclusions 

We have recently elucidated the folding pathway of spliceosomal snRNAs 

U2/U6, which has structural and catalytic similarities to the a self-splicing group II intron 

ribozyme
31,17

. Its pathway also involves obligatory intermediates and is dominated by a 

Mg
2+

 capture step that activates junction dynamics for catalysis. The similarities between 

the U2–U6 structural dynamics and those of the group II intron ribozyme now expand the 

parallels between these two enzymes and suggest the existence of evolutionarily 

conserved structural dynamics. 

The U2–U6 complex lies at the heart of the catalytic core of the eukaryotic 

spliceosome, but its structure has been highly debated. Here, we have used smFRET to 

show that this important RNA complex acts as a Mg
2+

-dependent conformational switch 
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that can adopt at least three distinct conformations. This supports the hypothesis that U2–

U6 adopts multiple conformations at various splicing stages
24

, which may or may not 

reflect the presence of unique active sites for each step
32

. 

In the high FRET conformation (N), the AGC triad extends the ISL as predicted 

for the four-helix structure
11

, and the ACAGAGA loop and U80 in the ISL are brought 

into close proximity by a stabilizing tertiary contact. Because of the expected relationship 

between these three regions during the first splicing step, it is possible that this 

conformation resembles the active conformation. The recent group II intron ribozyme 

crystal structure provides a framework for this scenario
18

. In this structure, 

C358G359C360 (proposed equivalents of the AGC triad) are clearly base-paired with 

G383U384G385, extending domain 5 (proposed equivalent of the U6 ISL).  

In the mid-FRET conformation, the AGC triad still forms the extended ISL (four-

helix structure)
11

, but the tertiary contact between the ACAGAGA loop and U80 is no 

longer formed, as its stability does not depend on the U80 mutations (Chapter 3). Our 

current data, however, do not allow us to conclude whether this conformation has a more 

direct role in splicing.  

In the low FRET conformation, a junction migration takes place, resulting in the 

formation of helix IB (three-helix junction)
20

. Helix I is important for both steps of 

splicing, and a conformational rearrangement must precede each step
22

. This result is in 

agreement with our mutational data that link the formation of the low FRET 

conformation to an activating step between the first and second splicing steps. It is 

tempting to propose that the observed structural dynamics also have an activating role in 
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the first splicing step, but the mutations tested here do not provide enough support for this 

conclusion.  

The role of Mg
2+

 ions at different stages of spliceosomal activation and catalysis 

has been established by experiments using phosphorothioate-substituted RNAs
33,34,35,36

. A 

key sensitive nucleotide is the phylogenetically conserved U80, which suggests that this 

base either has a direct role in catalysis or is at least involved in a closely related step
34

. 

Phosphorothioate substitutions in the 5! and 3! splice sites also involve Mg
2+

 ions in both 

splicing steps by activating the nucleophilic attack and stabilizing the leaving groups
33,35

, 

and this suggests the presence of a Mg
2+

-dependent conformational change specific to the 

second step of splicing
35,36

. We propose that this Mg
2+

-induced conformational change 

corresponds to the one observed here. On the basis of this model, however, one might 

expect an inverse effect, whereby Mg
2+

 ions would preferentially stabilize the high FRET 

structure. In the presence of an essentially constant supply of Mg
2+

 ions in vivo, it is 

possible that the role of at least some of the spliceosomal proteins is to adjust the relative 

stability of these conformations to time the U2–U6 structural dynamics for accurate and 

efficient splicing.  

We removed the highly conserved U6 ISL loop, but in accordance with a previous 

genetic study in which the ISL was extended by one base pair, we do not expect this loop 

to significantly affect the structure of U2–U6 in vitro
37

. Nonetheless, we have tested the 

effect of this deletion on the U2–U6 structural dynamics using a two-strand construct 

(Fig 2.8). Our results show that the two constructs behave almost identically. The three-
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strand construct, however, offers greater efficiency of synthesis, labeling and purification, 

and will facilitate future mutational studies. 

The whole chapter 2 is adopted from paper: Guo, Z.; Karunatilaka, K. S.; Rueda, D., 

Single-molecule analysis of protein-free U2-U6 snRNAs. Nat Struct Mol Biol 2009, 16 

(11), 1154-9. 

 



www.manaraa.com

 69 

!

Figure 2.8 Single molecule data for the construct with an intact GNRUA loop (A) 

The construct with GNRUA loop used in smFRET experiments. The donor fluorophore is 

at the 5’ end of U6, the acceptor is on the U6 base U70 and the biotin is on the 3’ end of 

U6, equivalent to the three-strand construct. (B) FRET histogram of this 2-strand 

construct in 40 mM MgCl2 There are 2 major peaks at FRET 0.2 and 0.4, which are 

comparable to that of the 3-strand construct. (C) Single-molecule trajectory of the 2-

strand construct. The molecule shows dynamic transitions between the 0.2, 0.4 and 0.6 

states, which are similar to the wild type. (D) Dwell time analysis for the rate constants of 

the 2-strand construct. The resulting folding rate constants for the two-strand construct 

are all within two-fold of the three-strand construct folding rates. These smFRET data of 

the 2-strand U2/U6 complex validate the use of the three-strand construct. The buffer 

conditions for these experiments are 50 mM Tris-HCl, pH 7.5, 40 mM MgCl2, 100 mM 

NaCl. The Figure is adopted from paper: Guo, Z.; Karunatilaka, K. S.; Rueda, D., 

Single-molecule analysis of protein-free U2-U6 snRNAs. Nat Struct Mol Biol 2009, 16 

(11), 1154-9. 
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3.1 Introduction 

In eukaryotic cells, the immature precursor messenger RNA (pre-mRNA) must go 

through several RNA processing steps to be converted into the mature messenger RNA 

for translation1,2. Splicing is one of the essential steps in the maturation of the pre-

mRNA, during which the non-coding sequences (introns) are removed and the sequences 

encoding proteins (exons) are ligated together3,4.  

In contrast to the autocatalytic self-splicing group II intron that is a ribozyme, the 

nuclear mRNA splicing is catalyzed by the spliceosome to accomplish, though both of 

them share exactly the same chemistry. The spliceosome is a highly dynamic 

ribonucleoprotein (RNP) complex, composed of 5 small nuclear RNAs (U1, U2, U4, U5 

and U6 snRNAs) and more than 150 proteins2,5. Each snRNA binds a variety of 

spliceosomal proteins yielding small nuclear ribonucleoproteins (snRNPs). During the 

assembly, activation and catalysis of the spliceosome, the snRNPs bind and disassociate 

following a highly ordered and regulated pathway. During this process, the conformation 

of each snRNA undergoes dramatic rearrangements6.  
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The group II intron and the nuclear spliceosome are similar in numerous ways 

including the splicing chemistry, catalytic mechanism, structure of conserved domains 

and metal ion binding7. It was proposed based on those similarities that the group II 

intron is the evolutionary ancestor of the spliceosome and the spliceosome may be a 

ribozyme8.  

In an active spliceosome, only U2, U6 and U5 snRNPs remain and U5 has been 

shown to be functionally dispensable for catalysis in vitro
9,10, so it is highly likely that the 

U2 and U6 snRNAs form the catalytic core of the spliceosome and play a pivotal, directly 

role in catalysis (Figure 3.1A)11. Protein free U2/U6 was shown to catalyze slow 

reactions similar to both steps of splicing, supporting the hypothesis that RNA performs 

catalysis in the spliceosome and the significance of the U2/U6 complex12,13. Lots of effort 

has been devoted to study the structure and function of the U2/U6 complex. U6 is 

phylogenetically conserved, the most conserved spliceosomal snRNA, from yeast to 

humans. The conserved residues were demonstrated to be essential for function by 

mutational studies14-15 (Figure 3.1A). The U2 and U6 snRNAs form a stable complex 

through an extensive base-pairing network, recognizes pre-mRNA substrates, and bind 

catalytically essential metal ions16. Different conformations of the U2/U6 complex were 

discovered with a variety of approaches and it has been proposed that U2/U6 goes 

through conformational changes between the two steps of splicing to form multiple active 

sites11,17-18.  

However, in the absence of a high-resolution three-dimensional structure of the 

spliceosome, it is still impossible to access the detailed structural information of the 
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Figure 3.1 Secondary structure model of the spliceosomal snRNAs U2–U6 with base 

triple (A) Proposed secondary structure of spliceosomal snRNA U2/U6 from 
Saccharomyces cerevisiae

17. Highly conserved regions are highlighted in colors (U80 in 
red, AGC triad in yellow and ACAGAGA loop in green). The region in U2 that pairs 
with AGC to form Helix IB is in blue. U2/U6 binds intron (grey) and bring 5’ splice site 
and branch site in close proximity. The 5’ end of U6 is labeled by FRET donor (Cy3) and 
we cut the GCAUA loop (outline) to facility the labeling of U70 by FRET acceptor (Cy5) 
(B) Secondary structure of DV of the group II intron (left) and U6 ISL of the spliceosome 
(right)19. Highly conserved regions are highlighted in the same color code as in (A). Red 
dash lines indicate base triple interactions discovered from recent crystal structure of the 
group II intron (left) and proposed base triples in the spliceosome (right). (C) Proposed 
secondary structure of Helix IB11. (D) Schematic diagram of single molecule 
spectroscopy with TIR excitation. Single U2-U6 molecules are immobilized via a Biotin-
Streptavidin bridge. The donor fluorophore (D) is excited at 532 nm, and the donor and 
acceptor (A) fluorescence is collected through the objective and recorded by CCD 
camera.  
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spliceosomal snRNPs, specifically the functionally essential U2/U6 complex. Notably, 

the structure of group II intron contains five domains and among them, domain V (DV) is 

highly conserved both in term of sequences and secondary structure and is considered the 

active site of the group II intron7,20 (Figure 3.1B). DV contains a catalytically important 

bulge (AC) and three consecutive nucleotides named the catalytic triad (usually AGC, 

CGC for some species)21,22,23. The structure and behavior of DV is very similar to that of 

the U6 intramolecular stem loop (U6 ISL) (Figure 3.1B). U80 is considered the analogue 

of the DV bulge and the AGC catalytic triad is conserved from the group II intron to the 

spliceosome. The structure of DV from a recent atomic-resolution crystal structure of 

group II intron could provide valuable information about the structure of the spliceosomal 

snRNAs U2/U6 complex19-24. The most surprising feature of DV found in this crystal 

structure is the formation of base triples between DV and conserved nucleotides in the 

linker between DII and DIII (J2/3) (Figure 3.1B and 3.2). The components participating 

in the base triples are far away from each other in primary sequence, but they are drawn 

together to form the active site. Previous studies and the similarities allow us to make 

structural parallels between DV and the U6. It has been hypothesized that the existence of 

similar base triples in the U2/U6 complex (Figure 3.1B)19,25,26. U80 has been proposed to 

interact with the C61-G86 base pair resulting in a base triple. In the center of this triple 

helix, the G60•U87 and a guanosine in the ACAGAGA region that is the analogue of 

J2/3 in U6 have been proposed to form a conventional base triple. Another base triple has 

been proposed between A59-U88 and an adenosine within the ACAGAGA loop19,25. This 

mode is very appealing because in this model the catalytically crucial Mg2+ ion bound by  
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Figure 3.2 The recent crystal structure of the self-splicing Group II intron ribozyme 
supports the hypothesis that the high FRET conformation resembles the active 
conformation adopted during splicing given the similarity between the U6 ISL and the 
domain 5 of Group II intron. (a) The crystal structure of the whole self-splicing Group II 
intron. The boxed region is the catalytic active domain 5. (b) and (c) Higher 
magnifications of the boxed region (domain 5). In this structure, C358G359C360 
(equivalents of the AGC triad, orange) are clearly base paired with G383U384G385 
(blue), extending domain 5 (equivalent of the U6 ISL). In addition, the C360-G383 base 
pair forms a base triple with C377 (equivalent of U80, red), which in turn forms a base 
stacking interaction with G288 from J2/3 (equivalent of the ACAGAGA loop, green). 
Finally, G288 forms a base triple with the G359-!384 base pair as well. All these 
interactions could readily take place in the high FRET structure observed in our 
experiments. The Figure is adopted from paper: Guo, Z.; Karunatilaka, K. S.; Rueda, D., 

Single-molecule analysis of protein-free U2-U6 snRNAs. Nat Struct Mol Biol 2009, 16 

(11), 1154-9. 
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U80 is brought in close proximity of the 5’ splice site bound to the ACAGAGA loop, 

branch site and the invariant AGC triad27,28. The base triples bring the components 

necessary for the first step of splicing close together and should be pivotal for the 

function of spliceosome (Figure 3.1A).  

Two key questions remain: Do the base triple interactions discovered in the group 

II intron also exist in the U2/U6 complex, and how is the catalytically important high 

FRET structure stabilized by the base triple interactions. Here we report single molecule 

FRET data that provide further insight into these issues (Figure 3.1D). We elucidated the 

evidence showing the existence of base triples in the U2/U6 complex that in a similar 

fashion as in the group II intron. Our data agree well with the structure predictions based 

on the U2/U6 folding and a database of 3D structures using FR3D program29. The triple 

helix may play significant role in position substrate and metal ions required for first step 

splicing, as well as maintain active structure of the active core.  

3.2 Materials and methods 

3.2.1 RNA Preparation and Purification  

There are 3 strands of RNA forming the U2-U6 complex in our construct (Figure 

2.1D): U6-1, U6-2 and U2. The sequences of RNA samples used in this chapter are listed 

in Table 1. All the RNA samples were purchased from Keck Foundation Biotechnology 

Resource Laboratory at Yale University School of Medicine (New Haven, CT). These 

RNA samples have 2’OH protection groups that are removed by a 2’OH deprotection 

reaction according to the manufacture’s protocol. The deprotected RNA was purified as 
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described in Chapter 2. The 5’ end of U6-1 is labeled with Cy5 during the RNA synthesis 

and a C7 amino linker is attached to 3’ end, enabling the labeling of a Cy3 to the 3’ end 

for our FRET studies. The RNAs were labeled and purified as described in Chapter 2. 

RNA concentrations were measured by UV-Vis absorbance at 260 nm. 

3.2.2 Single-molecule FRET 

 The three RNA strands were heated to 90°C for 45s and annealed at room 

temperature over 20 min at 1 !M concentration in a 10 µL solution with the standard 

buffer (50 mM Tris-HCl, pH 7.5, 100 mM NaCl) and variable concentrations of Mg2+ 

ions. The single molecule experiments were conducted as described in Chapter 2.  The 

histograms constructed with Matlab.  

3.2.3 Base triple predictions by FR3D 

All of the base triple predictions were obtained from the website of a database of 3D 

structures using FR3D program (http://rna.bgsu.edu/Triples/triples.php). There are two 

ways to search for a given base triple by base triple family or by combination. Base 

triples are divided into families according to their glycosidic bonds orientations and the 

interacting edges (for examples: Watson-Crick/Watson-Crick, Hoogsteen/Sugar Edge, 

Watson-Crick/Hoogsteen). All the structures showed in this chapter are constructed 

according to this website with ChemDraw. Comparisons of geometries are based on the 

PDB files of base triple structure downloaded from this website and constructed in 

Pymol. 
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WT U6-1 5’-AUA CAG AGA UGA UCA GCA GUU CCC CU-3’ 
WT U6-2 5’-AGG AUG AAC CGU UUU ACA AAG AGA UUU 

AU-3’ 
WT U2 5’-AUC UCU UUG CCU UUU GGC UUA GAU CAA 

GUG UAG UAU-3’ 
G50C U6-1 5’- AUA CAC AGA UGA UCA GCA GUU CCC CU- 3’ 
A51C U6-1 5’- AUA CAG CGA UGA UCA GCA GUU CCC CU- 3’ 
G52C U6-1 5’- AUA CAG ACA UGA UCA GCA GUU CCC CU- 3’ 
A53C U6-1 5’- AUA CAG AGC UGA UCA GCA GUU CCC CU- 3’ 
U80A U6-2 5’-AGG AAG AAC CGU UUU ACA AAG AGA UUU  

AU - 3’ 
U80C U6-2 5’-AGG ACG AAC CGU UUU ACA AAG AGA UUU  

AU - 3’ 
U80G U6-2 5’-AGG AGG AAC CGU UUU ACA AAG AGA UUU  

AU - 3’ 
U80! U6-2 5’-AGG AG AAC CGU UUU ACA AAG AGA UUU  

AU - 3’ 
G52CG60A U6-

1 
5’-AUA CAG ACA UGA UCA ACA GUU CCC CU- 3’ 

U88C U6-2 5’-AGG AUG AAC CGU CUU ACA AAG AGA UUU  
AU- 3’ 

U87C U6-2 5’-AGG AUG AAC CGC UUU ACA AAG AGA UUU  
AU- 3’ 

U88A U6-2 5’-AGG AUG AAC CGU AUU ACA AAG AGA UUU  
AU- 3’ 

A59U U6-1 5’-AUA CAG AGA UGA UCU GCA GUU CCC CU- 3’ 
C61G U6-1 5’-AUA CAG AGA UGA UCA GGA GUU CCC CU- 3’ 
G86C U6-2 5’-AGG AUG AAC CCU UUU ACA AAG AGA UUU  

AU- 3’ 
G86CU80A U6-

2 
5’-AGG AAG AAC CCU UUU ACA AAG AGA UUU  
AU- 3’ 

G86CU80c U6-2 5’-AGG ACG AAC CCU UUU ACA AAG AGA UUU  
AU- 3’ 
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3.3 Results 

3.3.1 A base triple forms between the metal binding U80 bulge and the G86-C61 base 

pair 

According to the crystal structure of the group II intron, in DV, C360 and G383 

form a Watson-Crick base pair and the sugar edge of C377 from DV bulge interacts with 

Hoogsteen edge of C360 yielding G383-C360!C377 base triple. The hypothetical base 

triple G86-C61!U80 in U2/U6 is proposed to form in the same family adopting the same 

conformation (Figure 3.1B and 3.4A,B).  

To confirm the existence of G86-C61!U80 base triple, we tested mutations within 

this base triple. The results are reported in table 3. As predicted by the model, if there are 

base triple interactions in the U2/U6 complex, the regions where the two fluorophores 

attached should be in close proximity and the high FRET should be observed, if we 

disrupt the base triple, the high FRET state should be destabilized.  

The U6 base U80 is highly conserved and has been involved in binding a metal 

ion important for catalysis30. To assess its role in base triple formation, we deleted and 

mutated it to A, G or C (Figure 3.3) and with single molecule FRET, which can uncover 

key structural and dynamic information otherwise hidden in bulk studies and allows to 

record movies of molecular motion and chemical activity of individual 

complexes31,32,33,34. The U80G mutation and deletion are lethal in yeast, whereas U80A 

and U80C are viable35. The corresponding 5 mM Mg2+ smFRET histograms (Figure 3.3)  
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Figure 3.3 smFRET histograms for the U80 mutations (U80, U80G, U80A and U80C) 
and nucleotides involved in base triple G86-C61!U80 in 5 and 40 mM Mg2+, as 
indicated. (A, B) The U80 deletion and G mutation result in the disappearance of the high 
FRET conformation in the low-[Mg2+] histogram, but do not affect the intermediate and 
low FRET conformations in the high-[Mg2+] histogram. (C, D) The smFRET histograms 
for U80A and U80C are similar to that of the wild type. (E) C61G/G86C mutant disrupt 
high FRET structure (F) C61G/G86C/U80A mutations can restore the high FRET, 
consistent with the predictions. (G) C61U can retain the high FRET state, which is agree 
well with the model. 
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Figure 3.4 Structure models according to FR3D

29
 (A-E) Structures of base triples 

according to FR3D29. (A) G383-C360!C377 base triple discovered in the group II intron. 
(B) G86-C61!U80 base triple proposed in U2/U6. (C) G86-C61!A80 base triple 
proposed in U2/U6. (D) G86-C61!C80 base triple proposed in U2/U6 (E) C86-G61!A80 
base triple proposed in U2/U6. (F) Comparison of geometry of wild type G86-C61!U80 
base triple (Black) and mutant C86-G61!A80 base triple (Grey) according to FR3D29.(G) 
G86-U61!U80 base triple proposed in U2/U6.The interaction between U61 and U80 is 
through the backbone. (H) Conformation of G86-U61!U80 base triple according to 
crystal structure from FR3D29. 
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show that the broad distribution characteristic of the high FRET conformation disappears 

for the U80G mutation and deletion, but it remains present in both the U80A and U80C 

mutants. In 40 mM Mg2+, however, the histograms are similar for all mutants (Figure 

3.3). The centers of the intermediate FRET distributions for the U80 deletion and U80G 

mutant shift to 0.43 and 0.47, respectively, indicating that the ISL bends differently in 

these mutants. A comparison of the NMR structures of the wild-type ISL and the U80G 

mutant shows a ~12Å displacement of U70 (location of Cy3), supporting this idea36,37,34.  

U80 deletion eliminates the high FRET conformation, possibly due to disruption 

of the G86-C61!U80 base triple since one base in this base triple is completely missing. 

U80G also destabilizes the high FRET state and could inhibit the formation of base triple 

G86-C61!U80 by base pairing with C67 resulting in the C67–G80 base pair, thereby 

changing the structure of the U6 ISL. U80A and U80C could still form base triple and the 

high FRET state, with the premise that the high FRET structure is stabilized by base 

triple interactions (Figure 3.1A)34. A database of 3D structures using FR3D program 

shows that resulting base triples, by U80A and U80C respectively, GCA and GCC are 

possible and stable (Figure 3.4C,D)29.  

To disrupt the G86-C61!U80 base triple but maintain the U6 ISL stem, the C61-

G86 base pair was swapped, altered to G61-C86. Most of the high FRET state is 

disrupted at 5mM MgCl2, under which condition we usually see dominant high FRET 

with wild type U2/U6. FR3D predicts the resulting C-G!U to be unstable, and the data 

support the hypothesis that this triple is important in forming the high FRET state. 

Furthermore, at 40mM Mg2+, there is only one major peak with FRET 0.3. We reported 
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in Chapter 2 that transitions to the 0.2 FRET state is corresponding to the formation of 

helix IB (Figure 3.1C) and mutations that destabilize Helix IB eliminate the 0.2 FRET 

state34. Similar to other mutations that disrupt the formation of helix IB, C61G also 

destabilizes the 0.2 state, conforming our earlier conclusion (Figure 3.3E and see below).  

To recue the formation of the base triple from the swap mutant G61-C80, 

according to prediction of FR3D, the U80 was mutated to A. Single molecule data at 5 

mM Mg2+ of this mutant show inefficient recovery of the high FRET state (Figure 3.3F). 

This may be because this base triple serves as the stacking terminal of other two triples 

and the CGA base triple is not quite isosteric; changing U with a larger purine may alter 

the geometry and interfere the folding (Figure 3.4E,F).  

Another mutation, C61U, is expected to retain the formation of base triple (Figure 

3.4G,H). We observe high FRET in 5 mM MgCl2 with this mutation, confirming our 

model (Figure 3.3G). The different effect of C61G/G86C and C61U on high FRET 

structure may explain why C61G/G86C is lethal while spliceosomes with a C61U 

mutation still retain 50%-80% splicing activity in vitro
35,38.  

In summary, the single molecule FRET data provide evidence supporting the 

hypothesis that a base triple forms between the U80 bulge of the U6 ISL and the C61-

G86 base pair in a similar fashion as in DV of the group II intron (Figure 3.4A,B). This 

base triple may play an important role in bringing a proven catalytically essential metal 

ion into the active site and stabilizing the active structure of spliceosome. 
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3.3.2 Cytosine scanning reveals nucleotides possibly involved in base triple formation 

In DV of the group II intron, G359 and U384 form a Wobble base pair and the 

Hoogsteen edge of G288 from J2/3 pairs with G359 Watson edge to form U384! 

G359!G288 base triple. Using the same set of interactions, C289 interact with Watson-

Crick base pair C358-G385, resulting in C358-G385!C289 base triple (Figure 3.1B and 

3.6A,B). We propose that in U2/U6, two nucleotides in the ACAGAGA loop that is the 

counterpart of J2/3 of the group II intron form base triple with U87•G60 and U88-A59 

respectively adopting same conformations (Figure 3.1B and 3.6C,D).  

We mutated the U2 bases 31–36 to replace the ACAGAGA loop with a double-

stranded helix (Figure 3.5A)34. The corresponding single-molecule experiments in 5 mM 

Mg2+ also show the disappearance of the high FRET conformation (Figure 3.5B). These 

results show that the high FRET state is stabilized by a tertiary interaction involving 

ACAGAGA loop. The presence or absence of the high FRET conformation in all of these 

mutants correlates well with viable or lethal mutations in yeast, supporting the idea that 

the in vitro dynamics may be important for splicing in vivo
35,34. To further demonstrate 

which nucleotides are involved in the base triple formation, we mutated the region 

covering G50-A53 to cytosine individually (Figure 3.5C-F).  

To form the hypothetical base triple U88-A59!A, U88-A59 interacts with an 

adenosine in the ACAGAGA loop. Changing this adenosine to a cytosine would allow 

the formation of a U88-A59!C base triple (Figure 3.6E). Furthermore, according to the 

crystal structure of the group II intron, cytosine in this position has an additional 

interaction with a phosphate group of DV backbone (Figure 3.6F). Similarly, this A to C  
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Figure 3.5 Cytosine scanning (A) The construct with ACAGAGA loop deletion. The U2 
bases in green were mutated to base pair with the ACAGAGA sequence in U6. (B) The 
smFRET histogram of ACAGAGA loop deletion mutant in 5 mM MgCl2. There are 2 
major peaks at ~0.2 and ~0.3 FRET. (C-F) smFRET histograms for the cytosine scanning 
in the ACAGAGA loop (in 5 and 40 mM Mg2+, as indicated). (C, E) The G50C and 
G52C mutation result in the disappearance of the high FRET conformation in the low-
[Mg2+] histogram. (D) The smFRET histograms for A51C are similar to that of the wild 
type. (F) A53C stabilizes high FRET both with low and high Mg2+ concentrations. These 
results indicate that G50 or G52 and A53 are involved in a functionally important base 
triple tertiary contact that stabilizes the high FRET conformation. The Figure A is 

adopted from paper: Guo, Z.; Karunatilaka, K. S.; Rueda, D., Single-molecule analysis of 

protein-free U2-U6 snRNAs. Nat Struct Mol Biol 2009, 16 (11), 1154-9. 
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Figure 3.6 Structure models according to FR3D
29

 (A-E) Structures of base triples 
according to FR3D. (A) U384! G359!G288 base triple discovered in the group II intron. 
(B) C358-G385!C289 base triple discovered in the group II intron. (C) U87!G60!G52 

base triple proposed in U2/U6. (D) U88-A59!A53 base triple proposed in U2/U6. (E) 
U88-A59!C53 base triple proposed in U2/U6. (F) The structure of C358-G385!C289 
base triple according crystal structure of the group II intron. There is an additional 
interaction between the C289 and the phosphate group in the backbone. 
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mutation should stabilize the high FRET more. According to the single molecule data, 

A51C shows near WT behavior with both 5mM and 40 mM Mg2+, while the A53C 

mutant stabilizes the high FRET state at both 5mM Mg2+ and 40mM (Figure 3.5D, F). 

The A51 in the ACAGAGA loop has been shown to interact with the 5’ splice site and 

plays an important role in the recognition and positioning of the 5’ splice site16. The near 

WT result obtained with the A51C mutant further suggests that this nucleotide does not 

participate in the tertiary base triple interaction. A53C stabilizes the high FRET as we 

predicted, suggesting that the A53 is part of the U88-A59!A base triple. 

According to our model, U87•G60 interacts with a guanosine in the ACAGAGA 

loop, yielding a base triple. If we mutate this guanosine to a cytosine, the base triple 

U87!G60!G is predicted to be disrupted due to steric clashes. We found that both G50C 

and G52C can destabilize the high FRET structure with 5mM Mg2+ (Figure 3.5C, E). We 

hypothesize that G52 is involved in the base triple rather than G50. Because in group II 

intron, two consecutive nucleotides in J2/3 (G288C289) form base triples with DV, we 

think it is more likely that it is two similar consecutive nucleotides G52A53 that 

participate in the triplex in U2/U6. G50C may cause the formation of other alternative 

structures with low FRET. However, we cannot totally rule out the possibility that G50 is 

part of the base triple (Also see below). All the data are summarized in table 3. 

In summary, according to our data, nucleotides G52A53 most probably 

participates in the base triple interactions.    
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3.3.3. Base U88-A59!A53 may not be essential in stabilizing the high FRET structure 

According to our cytosine scanning results, we proposed that A53 in the 

ACAGAGA loop interacts with the A59-U88 base pair to form a base triple (Figure 

3.1B). To further test the existence and the influence of this proposed base triple to the 

overall structure, a serial of mutants were tested. All the data are summarized in table 3. 

With an A59C mutation, both the U6 ISL and the base triple are predicted to be 

disrupted. Single molecule data show that the high FRET structure is destabilized greatly 

but not completely at 5mM MgCl2 (Figure 3.7A). However, either destabilization of the 

junction of the U6 ISL or the base triple may reduce the high FRET state. So we designed 

another mutant in which the A59-U88 base pair was swapped to U59-A88. This mutation 

retains the stability of the U6 ISL, and only the base triple is destabilized according to 

FR3D29. We find that the high FRET state was not disrupted significantly by this 

mutation at 5 mM MgCl2, suggesting that destabilization of this base triple is not 

sufficient to disrupt the high FRET structure with the other two base triples in place and 

the reduction of high FRET observed with A59C may be due to the disruption of the U6 

ISL that is important for numerous tertiary interactions (Figure 3.7B). This is consistent 

with the observation that the analog of this base triple in DV of the group II intron 

(G385-C358!C289) only has a supporting role in stabilizing the structure and the same 

flipped mutation in the group II intron dose not effect splicing in vivo
39. Furthermore, 

with this swap mutant, at 40mM MgCl2, the majority of the molecules adopt the 0.3 state, 

and a small fraction stay in the high FERT state (Figure 3.7B). It is obvious that A59U 

can disrupt helix IB and it was demonstrated to inhibit the second step of splicing like  
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Figure 3.7 smFRET histograms for the mutations of nucleotides involved in base 

triple U88-A59!A53 in 5 and 40 mM Mg2+, as indicated. (A, C) The A59C and U88C 
mutations result in the disappearance of the high FRET conformation in the low-[Mg2+] 
histograms. (B) The smFRET histogram A59U/U88A with low ion concentration is 
similar to that of the wild type. (D) U88C/A53C double mutant can recues the high FRET 
state from U88C alone. (E, F) Structures of base triples according to FR3D29. (E) C88-
A59!A53 base triple proposed in U2/U6. (F) C88-A59!C53 base triple proposed in 
U2/U6. This base triple is more stable than the C88-A59!A53 base triple because of 
additional interactions. 
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A59C, but to an even greater extent40,34,35. These data confirm our pervious conclusion 

that the 0.2 state corresponds to the formation of Helix IB which plays a important role in 

the second step of the splicing34,35 (See above).  

The data suggest at this position of the triple helix it is the destabilization of the 

U6 ISL junction other than the base triple that effect the high FRET structure One can 

predict that if we only destabilize the junction not the base triple, the high FRET state 

should still be disrupted. We made a U88C mutant, which is predicted to form a stable 

CAA base triple and Helix IB, but the U6 ISL is destabilized by introducing the C•A 

mismatch (Figure 3.1A and 3.7 E). With 5 mM MgCl2 most of the high FRET structures 

disappear from the histogram, leaving a 0.6 state peak, consistent with our prediction 

(Figure 3.7C). In addition, with 40mM MgCl2, the majority of molecules adopt the 0.2 

FRET structure and only small fraction is in the 0.3 state (Figure 3.7C). It is may be 

because the disruption of the U6 ISL allows the complex to form helix IB (0.2 state) 

more easily. The double mutant A53C/U88C destabilizes the U6 ISL as well, but 

compared to U88C alone, there are two additional interactions contributing to hold the 

base triple together; one is the hydrogen bond between the –NH3 in C4 of C88 and the O2 

of C53, and the other one is between the –NH3 in C4 of C53 and the oxygen of phosphate 

group in backbone, the same as found in the crystal structure of the group II intron 

(Figure 3.7F). So the double mutant A53C/U88C is expected to populate the high FRET 

state (~0.8) while the U88C dose not. In our single molecule FRET assay, we observed 

high FRET with 5mM MgCl2, which is less than the A53C because of the disruption of 

the U6 ISL. (Figure 3.7D and 3.5F) 
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In summary, similar to its analog in the group II intron, the hypothetical base 

triple U88A59A53 may only have a supporting role in stabilizing structure necessary for 

catalysis. Destabilizing only this base triple but keeping the other two will not 

significantly destroy the high FRET structure and functions associated with this structure.  

This conclusion is in good agreement with the in vitro splicing assay data, in which any 

mutation in the 53rd position is well tolerated, even though A53U disrupts the base triple. 

Neither A59C nor A59U/U88A is predicted to form a base triple but both retain high 

FRET structure to some extent. This is consistent with the in vitro splicing assay that the 

first step of splicing is not significantly affect by those mutations. But both of them 

destabilize the helix IB and inhibit the second step of splicing, explaining their lethality 

in yeast38,35.  

3.3.4 Proposed base triple U87!G60!G52 is invariant 

G60 is invariant in U6 and its corresponding analog in the group II intron, G359, 

is invariant as well22,7 (Figure 3.1B). From cytosine scanning, we find that mutating the 

third G (Either G50 or G52) of this base triple to C, with which the base triple is 

predicted to be impossible, disrupts the high FRET conformation. According to the 

FR3D29, mutating the G60 to A or U87 to C should rescue the base triple formation from 

the G52C mutation and restore the high FRET state (Figure 3.9A,C). However, we found 

that neither of these mutants rescues the high FRET state (Figure 3.8A,B). With the 

double mutant G52C/G60A (Figure 3.8A), compared to the G52C only, only small 

fragment of the high FRET state was restored, suggesting the rescue is not quite efficient. 

It is may be because the G60A mutation changes the relative orientation and geometry of  
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Figure 3.8 smFRET histograms for the mutations of nucleotides involved in base 

triple U87!G60!G52 in 5 and 40 mM Mg2+, as indicated. (A, B) Neither G60A nor 
U87C can restore the high FRET. (C) U87C itself can decrease the population of high 
FRET. (D) U87C cannot rescue high FRET deficiency caused by G50C mutation. These 
data indicates that this base triple is invariant and may play an important role in stacking 
interactions stabilizing the active structure. The analog of this base triple in the group II 
intron is invariant as well19. 
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Figure 3.9 (A, C, E) Structures of base triples according to FR3D
29. (B, D, F) 

comparisons of geometry of wild type (Black) and mutant base (Grey) triples according 
to FR3D29. (A) U87!A60!C52 base triple proposed in U2/U6. (B) Comparison of 
geometry of wild type U87!G60!G52 (Black) and mutant U87!A60!C52 base triple 
(Grey). (C) C87!G60!C52 base triple proposed in U2/U6. (D) Comparison of geometry 
of wild type U87!G60!G52 (Black) and mutant C87!G60!C52 base triple (Grey). (E) 
C87!G60!G52 base triple proposed in U2/U6. (F) Comparison of geometry of wild type 
U87!G60!G52 (Black) and mutant C87!G60!G52 base triple (Grey). 
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the base triple, breaking the stacking interactions (Figure 3.9B). This U87!G60!G52 base 

triple may be the most crucial for the stacking interactions holding all of three base triples 

together since it is in the middle of this base triple sandwich. U87C cannot suppress the 

high FRET !"#$%$"&%' caused by G52C mutation either (Figure 3.8B). U87C also twists 

the relative orientation of the base triple as G52C/G60A and probably breaks the stacking 

too (Figure 3.9D). It is quite surprising to find that a single U87C mutation is be able to 

change the histogram profile dramatically compared to the wild type U2/U6. With U87C, 

at 5mM MgCl2, there are two major peaks in the histogram, one is a very broad peak 

between 0.2 and 0.4 and the other is a FRET 0.5 peak, in contrast to a major 0.9 and a 

minor 0.4 peak of the wild type U2/U6 (Figure 3.8C). The stable base triple from U87C 

mutation disrupt the high FRET structure either by distorting of the geometry as 

aforementioned (Figure 3.9F) or stabilizing the U6 ISL and constraining the dynamics 

essential for base triple formation or proper folding. 

Alternatively, U87•G60 may form a base triple with G50 instead of G52. So we 

test the G50C/U87C. Even though the base triple C87-G60!C50 is predicted by FR3D to 

be stable, the high FRET deficiency was failed to be recued (Figure 3.8D). As a result, 

whether it is G50 or G52 that truly participate in the base triple may be difficult to 

indentify.  

In conclusion, base triple U87!G60!G52 may be invariant, the same as its 

counterpart in the group II intron (base triple U384!G359!G288). Any mutation made in 

this triple changes the geometry and breaks the stacking. Compared to the other two base 

triples, the type of this base triple is more common and conventional19. It is highly 
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conserved indicating that it may play a very important role in stacking interactions and 

catalysis of spliceosome. All the data are summarized in table 3.!
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Mutant Phenotype  BT Prediction Predicted Observed 
U80 deletion Lethal No Low FRET Low FRET 
U80A 80%-100% WT Yes High FRET High FRET 
U80C 80%-100% WT Yes High FRET High FRET 
U80G Lethal No Low FRET Low FRET 
C61GG86C Lethal No Low FRET Low FRET +few 

high FRET 
C61GG86CU80A Not tested Yes High FRET Medium fraction 

of high FRET 
C61U 50%-80% WT Yes High FRET High FRET 
G52C Lethal No Low FRET Low FRET 
U87C Viable Yes High FRET Low FRET 
G60A/G52C Not tested Yes High FRET Low FRET+ few 

High FRET 
U87C/G52C Not tested Yes High FRET Low FRET 
U87C/G50C Not tested Yes High FRET Low FRET 
A53C 80%-100% WT Yes High FRET High FRET 
A59C Lethal No Low FRET Low FRET +few 

high FRET 
U88C Viable Yes High FRET Low FRET 
A59U/U88A Lethal No Low FRET High FRET 
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3.4 Conclusions 

Here we report the first direct structural evidence that supports the existence of 

the base triples in the spliceosomal snRNA U2/U6. These interactions were proposed 

according to a corresponding set of base triple interactions discovered in the recently 

published crystal structure of the self-splicing group II intron19-24, 41-19, 42. The data 

support the hypothesis that U2/U6 and the group II intron contain analogous base triples 

that are important for function. 

The AGC triad in U6 is highly conserved and most mutations within it lead to a 

severe deficiency of splicing11,40,35. In contrast, mutations of their base pairing partners in 

U2 or in U6 ISL do not11,15,35. These data indicate that the AGC triad may have multiple 

roles besides forming base pairs in extended U6 ISL or helix IB. The recent crystal 

structure of group II intron suggest that the AGC triad may participate in base triple 

interactions that are important in maintaining the compact and delicate structure of the 

active core19.!

The putative base triples in U2/U6 may have a very significant role in the function of the 

spliceosome. They are able to draw essential parts for the first step of splicing in close 

proximity, which are otherwise far away from each other in primary sequence. The base 

triple G86-C61!U80 brings the catalytic important Mg2+ close to the proposed active site 

for the first step of splicing, containing the 5’splice site bound with ACAGAGA loop, 

branch site and the catalytic triad AGC. Both U88-A59!A53 and U87!G60!G52 bring 

the 5’splice site and the branch site to the active core (Figure 3.1A). But in contrast to the 

other two that play a central role in maintaining the overall structure and catalysis, the 
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U88-A59!A53 base triple may only have a supporting role in stabilizing the active 

structure, similar to its counterpart in the group II intron. This may be because it is on the 

bottom of this base triple sandwich and not important for the stacking. The G60 is 

invariant in U6 and so is the analogous G359 in the group II intron. This may be able to 

explain the failure of rescue of this base triple. Any change made in this base triple 

disrupts the overall structure, which might be able to be attributed to the breaking of the 

stacking interactions among three base triples. 

The base triples may also play a significant role in position catalytically important 

Mg2+ ions for the two-metal ion catalysis proposed for the spliceosome. Most ribozymes 

require divalent ions such as Mg2+ as cofactors for catalysis43. Numerous biochemical 

and structural studies of the group II intron suggest a two-metal ion mechanism for the 

splicing reaction7,22.  And the spliceosome may also utilize the same machanism44. It was 

revealed that catalytically important divalent ions bind in the DV bulge and the catalytic 

triad23-24, 41. The crystal structure of the group II intron demonstrated that the triple helix 

provides a platform for metal ion binding with a 3.9 Å distance between two metal ions, 

which agrees very well with the two-metal ion model (Figure 3.2)24, 41,44. Analogous 

regions in U6 has been shown to bind Mg2+ ions involved in structure and catalysis40,30,45. 

U80 binds a Mg2+ ion essential for first step of splicing reaction30. Several positions in 

the ACAGAGA loop and AGC triad may have a role in metal ion binding40. The 

hypothetic triple helix in U2/U6 that brings these regions together may also be able to 

position two metal ions in the active core of the spliceosome for the catalysis in a similar 

way as in the group II intron.!
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Intriguingly, mutational studies revealed that A59 plays a more important role in 

the formation of helix IB than the other two nucleotides in the AGC triad11. According to 

our data, A59 plays a less essential role in stabilizing the base triple interaction than the 

other two. It was proposed there are multiple active sites for different steps of splicing 

reaction but they may overlap with each other to some degree11. Our data agree with this 

interesting idea that the A59 is involved more in the second step active structure while 

G60C61 are more important for the one of first step. 

Our data support a model that extended U6 ISL with the AGC base pair with 

GUU of U6 that participates in the triple helix formation17. If the extended U6 ISL is 

disrupted, the high FRET state is also decreased. In Chapter 2, we demonstrated that 

under low MgCl2 condition (5mM), most of U2/U6 complexes prefer the high FRET 

four-way junction structure with an extended U6 ISL, and with high concentration of 

MgCl2 (40mM-100mM), the intermediate state with a medium FRET is stabilized 

drastically and enable the formation of low FRET three-way helix structure with helix 

IB34 (Figure 3.10). This is surprising and people expected the opposite. The base triple 

model proposed in this report offers an explanation for these data (Figure 3.10). 

According to a NMR study of U6 ISL, with low concentration of MgCl2, U80 prefer to 

flip out of the helix of U6 ISL46, which enables the base triple formation between U80 

and C61-G86. This is also observed for DV bulge in the crystal structure of the group II 

intron41. Higher concentration of MgCl2 stabilizes the conformation with U80 stacked in 

U6 ISL46 and disrupts the base triples (Figure 3.10). This conformation is highly possible 

to be the intermediate state in our folding pathway of U2/U634. This explanation is  
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    Figure 3.10 Revised folding pathway of U2/U6. With low concentration of MgCl2, U80 

prefer to flip out of the helix of U6 ISL, which enables the base triple formation between 

U80 and C61-G86. Higher concentration of MgCl2 stabilizes the conformation with U80 

stacked in U6 ISL and disrupts the base triples. This conformation is highly possible to be 

the intermediate state. Mg2+ ions stabilize the intermediate state that enable the formation 

of low FRET state with helix IB. This model explains why Mg2+ ions stabilize the 

intermediate state reported in Chapter 2. 
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consistent with the fact that Mg2+ ions inhibit the rescue of first step of splicing by Mn2+ 

in a thiophosphate substitution study of U8030. This may be because with high 

concentration of Mg2+, U80 is stacked in the helix and not available for base triples that 

important for metal ion coordination for first step of splicing. In addition, according to 

the folding nature of the four-way junction structure, it may be able to adopt a 

conformation in which the ACAGAGA loop and the U80 are in close proximity (Figure 

3.1D)27,17,47-48. However, because the triple interactions occur mainly between the AGC 

triad and a third strand (U80, G52 and A53) and the base-paring partner of AGC triad 

(G86-U88 in U6 or G21-U23 in U2) does not directly participate in the interactions. So 

we cannot totally rule out the possibility that the AGC forms a triplex in the form of helix 

IB. It is possible the base triples form during both steps of splicing and play pivotal 

structural and functional role in catalysis, similar to proposed role of base triples of group 

II intron19,49. Interestingly, both in the group II intron and spliceosomal snRNA U2/U6, 

the catalytic triad AGC is highly sensitive to mutations, while their base pairing partners 

only lead to minor defects in splicing39,50.  

It is highly possible that spliceosomal proteins are able to stabilize the U6 ISL and 

base triples in vivo. This may be able to explain why some mutations, like U88C, that 

disrupt the U6 ISL are not lethal in vivo
35

. For example, prp8 has been shown to interact 

extensively with snRNAs in the active core and is required for catalysis. This leads to the 

hypothesis that both RNA and protein components of spliceosome are involved directly 

in catalysis51. Proteins that bind U6 and are essential for the first step of splicing, for 

example Cwc 25, may stabilize the triple helix in vivo
52. 
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Part of Chapter 3 is adopted from paper: Guo, Z.; Karunatilaka, K. S.; Rueda, D., 

Single-molecule analysis of protein-free U2-U6 snRNAs. Nat Struct Mol Biol 2009, 16 

(11), 1154-9. 
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4.1 Introduction 

In eukaryotes, pre-mRNA contains both protein encoding sections, exons, and 

intervening sequences, introns. For proper protein translation, introns must be precisely 

removed and the exons need to be ligated together for translation
1,2

. This process is called 

splicing
3
. Nuclear pre-mRNA splicing is catalyzed by the spliceosome, a huge and 

dynamic complex containing five small nuclear RNAs (snRNAs U1, U2, U4, U5 and U6) 

and about 170 proteins in humans
2,4

. Accumulating evidence indicates that the 

spliceosome is at least in part a ribozyme and snRNAs U2 and U6 are responsible for 

catalysis of splicing
5,6,7

. Conserved regions in U6 (U80, AGC triad and ACAGAGA 

loop) have been proposed to participate in catalysis directly (Figure 4.1A)
8,9

.However, 

recent structural studies on Prp8 lead to the hypothesis that in the catalytic heart of the 

spliceosome, both RNA and protein components are involved in catalysis
10,11,12,

. 

During each round of the splicing reaction, the spliceosome is built anew on the 

pre-mRNA substrate following a highly ordered and stepwise pathway in which the 

structure of the spliceosome is in constant changing
2
. During the assembly and catalysis 

of the spliceosome, the snRNAs undergo dramatic structural rearrangements
13,14,15

 

(Figure 1.5C). The rearrangements of the snRNAs require the assistance of DExD/H-type  
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Figure 4.1 Prp24 and its binding site to U2/U6 (A) Domain structure of Prp24 from S. 

cerevisiae. Prp24 contains 4 RNA recognition motifs (RRM)
16

. The four RRMs are 

shown in different colors. (B) Labeled U2/U6 construct. The 5’ of the U6-1 is labeled by 

a FRET acceptor Cy5 and the 3’ is labeled by FRET donor Cy3. The 3’ of U6-2 is 

labeled by biotin for surface immobilization. Highly conserved regions are highlighted in 

red. Prp24 binding sites are in purple circles
17,14

. 
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RNA-dependent ATPases/helicases and RNA chaperones that do not require ATP. They 

help to unwind RNA helices, anneal duplexes and stabilize the active form of the RNA 

complexes
18,6

.  

Prp24 has been proposed to be the RNA chaperone of U6
19,20

. The spliceosomal 

protein Prp24 is an essential component of the U6 snRNP in yeast and helps U6 to 

remodel during assembly and catalysis of the spliceosome
20,16

. The details about the 

function and mechanism of Prp24 are still unclear. However, it is well established that 

recombinant Prp24 promotes the annealing of the U4/U6 snRNA complex yielding 

U4/U6 bi-snRNP in vitro
19

. However, recombinant Prp24 acts more efficiently in cell 

extract
21,19

. It may be that another member of the U6 snRNP, the Lsm protein complex, 

also helps the association of U4/U6 and works together with Prp24 to increase 

efficiency
22,23,24

. After the formation of the U4/U6 complex, Prp24 leaves the complex, 

but the Lsm proteins remain bound
25,26

. It has been proposed that Prp24 may return 

during the activation process of the spliceosome to help unwind the U4/U6 complex
21,27

. 

Prp24 does not hydrolyze ATP and may be an RNA chaperone
19

.  

Prp24 form Saccharomyces cerevisiae has four RNA recognition motifs 

(RRMs)
16

 (Figure 4.1A). Typically, RRMs preferentially bind single strand RNA
17

. 

Although a high-resolution structure of the full-length Prp24 is not yet available, the first 

three RRMs of Prp24 have been crystallized
16

. Currently, the functions of each RRM are 

not well understood. Genetic studies indicate that RRMs 2 and 3 may stabilize the free 

U6 snRNA
27

. Gel shift binding assays demonstrated that RRMs 1 and 2 are important for 

high-affinity binding of U6 snRNA and RRMs 3 and 4 may have other functions like 

controlling the stoichiometry of the Prp24 binding
20

. Biochemical studies with purified 
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U6 snRNP and binding assays with recombined Prp24 and truncated U6 indicat that the 

binding site of Prp24 on U6 may be located near the conserved ACAGAGA loop 

(Nucleotides 40-58 and Figure 4.1B) 
28,20, 25

. A more recent NMR study revealed that 

RRM2 binds the GAGA box in the conserved ACAGAGA loop of U6 in a sequence-

specific fashion and RRM1 interacts with the phosphate backbone of 3’ downstream 

GAUCA sequence via electrostatic interactions, leaving the bases available for base 

pairing (Figure 3.1B). This can disrupt the internal helix of U6 and expose the bases for 

base paring
17

, which is a very appealing model explaining the mechanism by which 

Prp24 promotes the annealing of the U4/U6 complex.  

Pervious structural studies about Prp24 were conducted with U6 snRNA or 

snRNP only. The genetic studies only considered the effect of Prp24 on the U4/U6 

complex. The question remains: does Prp24 change the structural dynamics of the U2/U6 

complex that is considered the active heart of the spliceosome? To address this question, 

we use single molecule FRET to characterize the effect of Prp24 on the structure and 

dynamics of U2/U6 complex. We observed that Prp24 can induce conformational 

changes of U2/U6 and stabilize a low FRET structure.  

4.2 Materials and methods 

4.2.1 Sample Preparation and Purification.  

There are 3 strands of RNA forming the U2-U6 complex in our construct (Figure 

1.7A): U6-1, U6-2 and U2. All the RNA samples were purchased from Keck Foundation 

Biotechnology Resource Laboratory at Yale University School of Medicine (New Haven, 

CT). RNA purification and labeling was preformed as described in Chapter 2.  



www.manaraa.com

 117 

The protein Prp 24 was obtained form the Butcher Lab in university of 

Wisconsin-Madison. Protein samples came in the storage buffer containing 50% glycerol, 

25mM Tris, 125 mM NaCl, 1.25mM DTT and 0.2 mM EDTA. Protein samples were 

dialyzed before use with dialysis buffer containing 50mM Tris, 100mM KCl and 2mM 

DTT.  

4.2.2 Steady-State FRET 

Steady-state FRET measurements of the binding of Prp24 to double-labeled U2-

U6 complex were carried out in a spectrofluorometer (Cary Eclipse, Varian Inc., Palo 

Alto, CA). Cy3 was excited at 550nm (10 nm bandwidth) and Cy3 and Cy5 emission 

intensities (ICy3 and ICy5) were measured at 565 nm and 665 nm (5 nm bandwidth), 

respectively. Relative FRET efficiencies were calculated as FRET = ICy5/(ICy3 + ICy5). A 

130 µL solution with 25 nM U6-1, 50 nM U6-2 and 100 nM U2 in standard buffer (50 

mM Tris-HCl, pH 7.5, 100mM NaCl and 25mM DTT) was first denatured by heating at 

90 ˚C for 2 min and then slowly annealed at room temperature for 20 minutes. After this 

RNA-only solution was scanned, various amount of protein were manually added to the 

RNA solution to reach final protein concentrations. After equilibration, the final FRET 

value was measured. The protein dissociation constant (KD) and cooperativity coefficients 

(n) were obtained by plotting FRET as a function of protein
 
concentration and fitting to 

the modified Hill equation:  

! 

FRET = FRET
0
" FRET

0
" FRET#( ) [Pr p24 ]n KM

n + [Pr p24]n( )( ) 
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4.2.3 Single-molecule FRET. 

The three RNA strands (Fig. 1.7A) were annealed in standard buffer (50 mM 

Tris-HCl, pH 7.5, 100 mM NaCl, 1% (vol/vol) 2-mercaptoethanol) and variable [Mg
2+

] 

from 1-10mM. A 10 µL solution was heated to 90°C for 45 sec before cooling at room 

temperature over 20 min. The annealed biotinylated and fluorophore-labeled complex 

was diluted to 25-50 pM and desired concentration of Prp24 was added in the diluted 

solution. RNA-protein complexes are immunized on PEGlated surface of quartz slides. 

This method was reviewed in detail in Ref 29. Single molecule measurements were 

conducted as described in Chapter 2. 

4.3 Results and discussion 

4.3.1 Prp24 binding to U2/U6 induces conformational change. 

We have developed a minimal fluorophore labeled U2/U6 construct that enables 

us to study the U2/U6 structural dynamics with FRET and single molecule 

spectroscopy
14

. We used this construct to characterize the Prp24 and U2/U6 interactions 

in this study. We first characterized the Prp24 and U2/U6 interactions using bulk FRET 

with various concentration of MgCl2 (Figure 4.2). With a fixed MgCl2 concentration, C-

terminal truncated Prp24 (Prp24 N1234) was added to the RNA solution. The bulk 

titrations were repeated with different concentrations of Mg
2+

, which are 0.1mM, 3mM, 

7mM and 20mM, respectively. For all the Mg
2+ 

concentrations, with the increase of the 

Prp24 N1234 concentration, the FRET decreased (Figure 4.2A), indicating that the Prp24 

N1234 induces a conformational change of U2/U6 that separates ACAGAGA loop and 

the U6 intramolecular stem loop (U6 ISL) apart form each other. The apparent 
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Figure 4.2 Bulk titration of Prp24 (A,B) Bulk fluorescence measurements of the 

labeled U2U6 complex in the dependence of prp24 concentration. (A) The bulk titrations 

are conducted with different concentrations of Mg
2+

, which are 0.1mM (in black), 3mM 

(in red), 7mM(in cyan) and 20mM (in blue), respectively. For all the Mg
2+ 

concentrations, with the increase of the prp24 concentration, the FRET decreased. (B) KD 

obtained from the titrations decreased with the increase of the Mg
2+

 concentration. (C,D) 

Bulk fluorescence measurements of the labeled U2U6 complex in the dependence of 

Mg
2+

 concentration. (C) The bulk titrations are conducted with different concentrations 

of prp24, which are 0mM (in blue), 60mM (in black), and 250mM (in red), respectively. 

For all the prp24
 
concentrations, with the increase of the Mg

2+
 concentration, the FRET 

decreased. (D) The KMg increased while the prp24 concentration was increasing.  
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dissociation constants (KD) of Prp24 N1234 with different MgCl2 concentration were 

obtained from the titrations that are KD (0.1) = 585.7 ± 75.8 nM, KD (3.0) = 159.2 ± 36.2 

nM, KD (7.0) = 156.5 ± 35.9 nM and KD (20) = 59.8 ± 17.3 nM, respectively. KD 

decreased with the increase of the Mg
2+

 concentration (Figure 4.2B), suggesting that 

Mg
2+

 ions help the binding of Prp24 N1234 to U2/U6. We also titrated change of FRET 

efficiency as a function of MgCl2 concentration with a fixed concentration of Prp24 

N1234. The bulk titrations are conducted with 0mM, 60mM, and 250mM of prp24 

N1234. For all the Prp24
 
N1234 concentrations, when the concentration of the Mg

2+
 

increased, the FRET ratio decreased. KMg was obtained from titrations (Figure 4.2C), 

which are KMg (0.0) = 10.7 ± 1.3 mM, KMg (60) = 26.3 ± 3.3 mM, and KMg (250) = 35.3 ± 

8.3 mM, respectively. The KMg increased with increasing concentration of Prp24 N1234 

(Figure 4.2D), indicating that the binding of Prp24 N1234 may compete with the Mg
2+

 

binding. This is consistent with the fact that binding site of Prp24 N1234 overlap with the 

proposed Mg
2+

 binding site in U6 (ACAGAGA loop and AGC triad)
30,31,32

. 

In conclusion, Prp24 N1234 can induce a conformational change of U2/U6 in our 

bulk FRET experiments and the binding of Prp24 N1234 is Mg
2+

 dependent. 

Surprisingly, interaction between Prp24 N1234 and U2/U6 may inhibit the binding of 

Mg
2+

, indicating that Prp24 N1234 may bind and bury one or more the Mg
2+

 binding sites 

in U6. 

4.3.2 Single molecule FRET reveals Prp24 stabilize a 0.2 FRET state 

Form bulk FRET data, we can only obtain information about the averaged 

behavior of many molecules, while single molecule FRET (smFRET) provides detailed 

dynamic information about the conformational changes of biological molecules, capture 
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transient intermediates which are difficult to detect in bulk solution experiments, and 

record conformational fluctuations at a time scale that is relevant for biological 

activity
33,34

. Characteristic single molecule trajectories of single U2/U6 with or without 

Prp24 N1234 that reveal the effect of Prp24 N1234 on the conformation of U2U6 

complex, are shown in Figure 4.3 A,B. Without Prp24 N1234, in 10mM MgCl2 U2/U6 is 

dynamic, jumping among three FRET states (0.6, 0.4 and 0.2) randomly. After adding 

Prp24 N1234, it becomes static in the 0.2 state stably. Furthermore, we built smFRET 

histograms with more than 100 single molecule trajectories in the presence or absence of 

Prp24 N1234. According to the smFRET histograms, without Prp24 N1234, the majority 

of molecules stay in the intermediate state (FRET=0.4) and low FRET state (FRET =0.2). 

In contrast, with 30 µM Prp24 N1234, most of molecules stay in a low FRET state 

(FRET=0.2) (Figure 4.3 A,B). 

We also performed a flow experiment in which with 3mM MgCl2 U2/U6 

complexes were immobilized on the surface of the quartz slide and Prp24 N1234 solution 

was injected while monitoring and recording with a CCD camera. This enabled 

monitoring of prp24 N1234-induced conformational changes in the real time. Before the 

addition of Prp24 N1234, the molecule is dynamic and stays mostly at high FRET state. 

After the addition of Prp24 N1234 (33 s), the molecule soon changed to the 0.2 state and 

became static, staying in the 0.2 state for the rest of time before photobleaching.  

In summary, our single molecule data reveal that Prp24 N1234 stabilizes a low 

FRET (0.2) state and restrict the dynamics of the U2/U6.  
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Figure 4.3 Effect of prp24 on the conformation of U2U6 complex (A,B) Single 

molecule traces reveal the effect of prp24 on the conformation of U2U6 complex and 

single molecule histograms indicate that the prp24 can induce significant conformation 

changes of U2U6 complex. (A) Without prp24 and with 10mM MgCl2 the molecule stay 

at the 0.4 state mostly and change to 0.2 and 0.6 states sometimes. Single molecule 

histogram has both 0.2 and 0.4 peaks. (B) After adding of prp24, it stays at the 0.2 state 

stably. Single molecule histogram has only 0.2 peak. (C) The monitor of prp24 induced 

conformational change in the real time. This experiment is carried out with 3mM MgCl2. 

Before the adding of prp24, the molecule stays at high FRET state but very unstable. 

After the adding of prp24 at the 33rd second, the molecule changes to the 0.2 state shortly 

and stay there for the rest of time before photobleaching.  
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4.3.3 Prp24 N1234 affects the structural dynamics of the U2/U6 complex 

To access the influence of spliceosomal protein Prp24 N1234 on U2/U6 folding 

dynamics, smFRET distributions were plotted with or without Prp24 N1234 between 

1mM and 10mM Mg
2+

. Each histogram is constructed with about 100 single molecule 

trajectories (Figure 4.4). With 1mM Mg
2+

 and no Prp24 N1234, most molecules stay in 

the high FRET state. However, after adding 30 nM Prp24 N1234, most of them adopt a 

0.2 FRET structure. At 3 and 5mM Mg
2+

 without Prp24 N1234, the majority of 

molecules stay in the high FRET state and only a small fraction of them stay in the 

intermediate state as described in the chapter 2
14

. Addition of Prp24 N1234 promotes 

most of U2/U6 to stay in a 0.2 FRET state. With 10mM MgCl2, after adding Prp24, 

FRET change from two major peaks at 0.4 and 0.2 to an only peak at 0.2. Single 

molecule data indicate that the Prp24 can induce significant conformation changes of 

U2U6 complex (Figure 4.4).  

We also conducted single molecule experiments with various concentration of full 

length Prp24 in 10mM MgCl2. With 10mM MgCl2 and 45 nM full length Prp24, most of 

molecules stay in a 0.2 state that is very similar to that with Prp24 N1234 (Figure 4.5A), 

consistent with the data from gel shift binding experiments showing that there is no 

significant difference in binding affinity with or without C-terminus of Prp24
20

. If the 

Prp24 concentration is decreased to 4.5 nM, a small fraction of molecules stay in a 0.35 

state, while majority of them adopting the 0.2 state (Figure 4.5B). With 45 pM Prp24, 

there are two major peaks in the corresponding histogram: a broad peak at 0.35 and a 

broad 0.2 peak (Figure 4.5C), indicating that full length Prp24 induces conformational 
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Figure 4.4 Single molecule histograms indicate that the prp24 N1234 can induce 

significant conformation changes of U2U6 complex. With 1mM MgCl2, after the 

adding of prp24 the FRTE change from a major peak around 0.8-1.0 to a big peak at 0.2 

and a smaller peak at 0.4. With 3mM MgCl2, after adding of prp24 the FRTE change 

from two major peaks at 0.8 and 0.6 to a big peak at 0.2 and a very small peak at 0.4. 

With 5mM MgCl2, after adding of prp24 the FRTE change from two major peaks at 0.8 

and 0.4 to a big peak at 0.2 and a very tiny peak at 0.4. With 10mM MgCl2, after adding 

of prp24 the FRTE change from two major peaks at 0.4 and 0.2 to an only peak at 0.2. 
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Figure 4.5 Single molecule histograms indicate that the full-length prp24 can induce 

the same conformation changes of U2U6 complex as Prp24 N1234.!(A) With 10mM 

MgCl2 and 45nm full length Prp24, most of molecules stay in a 0.2 state that is very 

similar to with Prp24 N1234 (B) With 4.5 nM and 10 mM MgCl2, a small fraction of 

molecules stay in a 0.35 state, while majority of then in 0.2 state. (C) With 45 pM Prp24 

and 10 mM MgCl2, there are two major peaks in the corresponding histogram: a broad 

peak in 0.35 and a broad 0.2 peak. 
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change of U2/U6 to a 0.2 state, but with low concentration of Prp24, the intermediate and 

low FRET states become less defined or in fast dynamics. 

In conclusion, Prp24 interaction with U2/U6 is dependent on Mg
2+

 and Prp24 

concentrations. 

4.4 Conclusions 

There are a large number of proteins in the spliceosome that play vital structural 

and catalytic roles
18,4

. RNA Chaperones, like Prp24, help the structural rearrangements of 

spliceosomal snRNAs. Here we report preliminary single molecule FRET data showing 

that spliceosomal protein Prp24 can induce a conformational change in U2/U6 complex. 

This RNA:protein interaction is Mg
2+

 and protein concentration dependent.  

Mg
2+

 ions help the binding of Prp24 to U2/U6, but in contrast, Prp24 inhibits the 

binding Mg
2+

. The Mg
2+

 binding sites have been proposed in the highly conserved 

regions, the ACAGAGA loop, AGC triad and U80
32,35,31,30

, overlapping with binding 

sites of Prp24
17,28

. Prp24 may bind these regions and inhibit binding of incoming Mg
2+

 

ions (Figure 4.1B). 

Prp24 has been shown to be able to anneal U4 and U6 to form a complex
27,19

. A 

recent NMR study with a segment of U6 and RRM2 of Prp24 revealed possible binding 

sites of Prp24 in U6
17

. In the resulting model, RRM2 of Prp24 binds the GAGA box in 

the ACAGAG loop in a sequence-specific fashion and RRM1 interacts with U6 via 

charge-charge interactions. Binding of Prp24 may be able to unwind part of the internal 

helix of U6 snRNA and expose bases for annealing with U4
17

. According to that model 

and our single molecule data, we proposed a mechanism by which Prp24 modulates the 
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structural dynamics of U2/U6 (Figure 4.6). As described in Chapter 3, with low 

concentration of Mg
2+

, there are base triples that stabilize the high FRET state. Prp24 

RRM1 and RRM2 bind the nucleotides that participate in the base triples (G52, A53 and 

AGC triad) and the binding of Prp24 may protect these nucleotides and disrupt the base 

triples and the high FRET state. At the same time, helix Ia and part of the U6 ISL may be 

unwound and this partial open conformation of U2/U6 may correspond to the 

intermediate FRET state observed. The opening of the U6 ISL facilitates the formation of 

helix IB and Prp24 may stay bound after the formation of three-helix structure with helix 

IB, stabilizing it form going back to the intermediate state and high FRET state. This may 

explain why with low concentrations of Prp24, the intermediate state becomes less 

defined. If the protein dissociates form U2/U6 before annealing, the partial open complex 

may adopt random conformations. In addition, low FRET state is less populated and also 

become less defined with low concentration of Prp24, suggesting that the binding of 

Prp24 stabilizes this conformation. 

It has been shown that the first RRMs of Prp24, RRM1 and RRM2, are important 

for high affinity binding of Prp24 to U6 snRNA and the function of RRM3 and RRM4 is 

unclear. It is possible that RRM3 and RRM4 are able to bind U2 and stabilize the 

complex formed between U2 and U6. The reason why Prp24 prefers to stabilize the 

three-way helix structure of U2/U6 may be that binding of Prp24 disrupts the base-triple 

interactions that stabilize the four–way helix structure. Furthermore, we showed evidence 

that destabilizing of the base triples may favor the formation of intermediate state and 

enable the transitions to the three-way helix conformation in Chapter 3. 
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Figure 4.6 Proposed the mechanism how Prp24 modulate the structural dynamics of the 

U2/U6. As described in Chapter 3, under low concentration of Mg
2+

, there are base triples that 

stabilize the high FRET state. Prp24 RRM1 and RRM2 binds the nucleotides that participate in 

the base triples (G52, A53 and AGC triad) The binding of Prp24 may protect these nucleotides 

disrupting the base triples and the high FRET state and unwind helix Ia and part of the U6 ISL. 

This partial open conformation of U2/U6 may be corresponding to the intermediate FRET state 

observed. The opening of the U6 ISL may facilitate the formation of helix IB and Prp24 may 

stay bound after the formation of three-helix structure with helix IB, stabilizing it form going 

back to the intermediate state and high FRET state.!
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Many functions of Prp24 have been suggested and proposed, including annealing 

and unwinding of U4/U6
17,19,27

, modulating the structural dynamics of the U2/U6. To 

conduct these multiple functions that are sometimes conflicting with each other, there 

must be some regulation mechanism for Prp24 function. Lsm proteins interact with Prp24 

and enhance the annealing of U4/U6
23,24,36

. In addition, other spliceosomal protein 

factors, especially regulation factors, may modulate the function of Prp24 at different 

stages of splicing. 

According to genetic studies, Prp24 promotes the annealing of U4/U6
19,27

. 

Structural studies with full length and truncated U6 and Prp24 revealed the possible 

binding sites of Prp24 to U6
20,28

. More recently, NMR studies revealed the sequence-

specific binding of RRM2 of Prp24 and proposed that Prp24 can open partially the U6 

ISL to facilitate the annealing of U4/U6. Because U2/U6 is believed to be the catalytic 

core of the spliceosome and Prp24 is an essential component of U6 snRNP
16,15

, we 

hypothesize that Prp24 also play an important role in modulating the structural dynamics 

of U2/U6. Our bulk and single molecule data is consistent with this idea. Prp24 may bind 

U6 in similar binding sites revealed by pervious studies and stabilize the three-way 

junction by a similar mechanism proposed according to the NMR study
17

 (Figure 4.6).  

However, the effect of Prp24 on structural dynamics of U2/U6 may be due to 

alternative mechanisms. Furthermore, the function of each RRM is unclear. More single 

molecule and biochemical experiments with wild type and mutant Prp24, which is going 

on in the lab now, will clarify these questions (See future directions in Chapter 5). 
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Splicing is one of the essential steps in the maturation of the pre-mRNA, during 

which the non-coding sequences (introns) are removed and the sequences decoding 

proteins (exons) are ligated together1,2. Spliceosomes catalyze splicing in organisms 

ranging from yeast to humans. The spliceosome is a highly dynamic ribonucleoprotein 

complex, composed of 5 small nuclear RNAs (U1, U2, U4, U5 and U6 snRNAs) and 

about 80 proteins in yeast and 170 in human3,4. Its catalytic core comprises three small 

nuclear RNAs (U2, U5 and U6) involved in substrate positioning and catalysis. U5 is 

showed to be functionally dispensable for the catalysis in vitro
5,6, so it is highly possible 

that the U2 and U6 snRNAs form the catalytic core of the spliceosome and directly play a 

pivotal role in catalysis7,8. It has been proposed, but never shown experimentally, that the 

U2/U6 complex adopts multiple conformations that reflect different activation states of 

the spliceosome9,7. The active structure of U2/U6 has been a matter of debate over recent 

years. Genetics study in yeast revealed that the AGC triad forms base pairs with the GCU 

in U2 yielding the catalytically important helix IB and the U2/U6 complex adopts a three-

way junction structure7. Helix IB was shown to be very important for the second step of 

splicing, so this three-way junction structure may represent the active site of the second 

step of splicing7,10. However, according to a more recent NMR study, the U2/U6 adopts a 

four-way junction structure with an extended U6 ISL that may be the active structure of 

the first step of splicing9 (Figure 1.5B). My single molecule study of U2/U6 provides 

some insights into this issue. 

In this thesis work, I have developed a single-molecule FRET (smFRET) assay to 
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probe the structural dynamics of a protein-free U2–U6 RNA complex from yeast in 

solution11. I tested the folding dynamics of the wild type U2/U6 and mutants of highly 

conserved regions of U2/U6. My data show the presence of at least three distinct 

conformations in equilibrium11. Both the three-way junction and the four-way junction 

structures may exist in solution. The minimal folding pathway consists of a two-step 

process with an obligatory intermediate11. The first step is strongly magnesium 

dependent, and we provide evidence suggesting that the second step corresponds to the 

formation of the genetically conserved helix IB. Site-specific mutations in the highly 

conserved AGC triad and the U80 base in U6 suggest that the observed conformational 

dynamics correlate with residues that have an important role in splicing11. Our data 

supports the hypothesis that U2–U6 adopts multiple conformations at various splicing 

stages12, which may or may not reflect the presence of unique active sites for each step13. 

In the high FRET conformation (N), the AGC triad extends the ISL as predicted for the 

four-helix structure9, and the ACAGAGA loop and U80 in the ISL are brought into close 

proximity by a stabilizing tertiary contact. Because of the expected relationship between 

these three regions during the first splicing step, it is possible that this conformation 

resembles the active conformation of the first step of splicing. In the mid-FRET 

conformation, the AGC triad still forms the extended ISL (four-helix structure)9, but the 

tertiary contact between the ACAGAGA loop and U80 is no longer formed, as its 

stability does not depend on the U80 mutations (Chapter 3). Our current data, however, 

do not allow us to conclude whether this conformation has a more direct role in splicing. 

In the low FRET conformation, a junction migration takes place, resulting in the 

formation of helix IB (three-helix junction)7. Helix I is important for both steps of 
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splicing, and a conformational rearrangement must precede each step14. This result is in 

agreement with our mutational data that link the formation of the low FRET 

conformation to an activating step between the first and second splicing steps. It is 

tempting to propose that the observed structural dynamics also have an activating role in 

the first splicing step, but the mutations tested here do not provide enough support for this 

conclusion.  

Furthermore, according to the folding of the some ribozymes like hairpin 

ribozymes and the NMR structure of the protein free U2/U6 complex, Butcher and 

coworkers proposed that the U2/U6 complex folds to the four-way junction structure 

autonomously and the formation of helix IB may need the assistance of proteins9,15. In the 

presence of an essentially constant supply of Mg2+ ions in vivo, it is possible that the role 

of at least some of the spliceosomal proteins is to adjust the relative stability of these 

conformations to time the U2–U6 structural dynamics for accurate and efficient splicing.  

I also report the first direct structural evidence that supports the existence of the 

base triples in the spliceosomal snRNA U2/U6 in this thesis work. These interactions 

were proposed according to a corresponding set of base triple interactions discovered in 

the recent published crystal structure of the self-splicing group II intron16,17. We proposed 

that these base triples existing in the spliceosomal RNA U2/U6 complex are in the same 

family of the ones found in crystal structure of the self-splicing group II intron given the 

extensive similarities between the spliceosome and the group II intron. Our data agree 

very well with the hypothesis. The AGC triad in U6 is highly conserved and most 

mutations within it lead to a severe deficiency of splicing7,18,10. In contrast, mutations of 

their base pairing partners in U2 or in U6 ISL do not7,19,10. These data indicate that the 
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AGC triad may have multiple roles besides forming base pairs in extended U6 ISL or 

helix IB. The recent crystal of group II intron suggest that the AGC triad may participate 

in base triple interactions that are important in maintaining the compact and delicate 

structure of the active core17.! The putative base triples in U2/U6 may have a very 

significant role in the function of the spliceosome. They are able to draw essential parts 

for the first step of splicing in close proximity, which are otherwise far away from each 

other in primary sequence. The base triple G86-C61!U80 brings the catalytic important 

Mg2+ close to the proposed active site for the first step of splicing, containing the 5’splice 

site bound with ACAGAGA loop, branch site and the catalytic triad AGC. Both U88-

A59!A53 and U87!G60!G52 bring the 5’splice site and the branch site to the active core 

(Figure 3.1A). But in contrast to the other two that play a central role in maintaining the 

overall structure and catalysis, the U88-A59!A53 base triple may only have a supporting 

role in stabilizing the active structure, similar to its counterpart in the group II intron. 

This may be because it is on the bottom of this base triple sandwich and not important for 

the stacking. The G60 is invariant in U6 and so is the analogous G359 in the group II 

intron. This may be able to explain the failure of rescue of this base triple. Any change 

made in this base triple disrupts the overall structure, which might be able to be attributed 

to the breaking of the stacking interactions among three base triples.!

The base triples may also play a significant role in position catalytically important 

Mg2+ ions for the two-metal ion catalysis proposed for the spliceosome. Most ribozymes 

require divalent ions such as Mg2+ as cofactors for catalysis20. Numerous biochemical 

and structural studies of the group II intron suggest a two-metal ion mechanism for the 

splicing reaction21,22. And the spliceosome may also utilize the same mechanism23. It was 
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revealed that catalytically important divalent ions bind in the DV bulge and the catalytic 

triad16, 24. The crystal structure of the group II intron demonstrated that the triple helix 

provides a platform for metal ion binding with a 3.9 Å distance between two metal ions, 

which agrees very well with the two-metal ion model (Figure 3.2)16, 24b,23. Analogous 

regions in U6 has been shown to bind Mg2+ ions involved in structure and catalysis18,25,26. 

U80 binds a Mg2+ ion essential for first step of splicing reaction25. Several positions in 

the ACAGAGA loop and AGC triad may have a role in metal ion binding18. The 

hypothetic triple helix in U2/U6 that brings these regions together may also be able to 

position two metal ions in the active core of the spliceosome for the catalysis in a similar 

way as in the group II intron.!

Our data support a model that extended U6 ISL with the AGC base pair with 

GUU of U6 that participates in the triple helix formation9. If the extended U6 ISL is 

disrupted, the high FRET state is also decreased. In Chapter 2, we demonstrated that 

under low MgCl2 condition (5mM), most of U2/U6 complexes prefer the high FRET 

four-way junction structure with an extended U6 ISL, and with high concentration of 

MgCl2 (40mM-100mM), the intermediate state with a medium FRET is stabilized 

drastically and enable the formation of low FRET three-way helix structure with helix 

IB11 (Figure 3.10). This is surprising and people may expect the opposite. The base triple 

model proposed in this report offers an explanation for these data (Figure 3.10). 

According to a NMR study of U6 ISL, with low concentration of MgCl2, U80 prefer to 

flip out of the helix of U6 ISL27, which enables the base triple formation between U80 

and C61-G86. This is also observed for DV bulge in the crystal structure of the group II 

intron16. Higher concentration of MgCl2 stabilizes the conformation with U80 stacked in 
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U6 ISL27 and disrupts the base triples (Figure 3.10). This conformation is highly possible 

to be the intermediate state in our folding pathway of U2/U611. In addition, according to 

the folding nature of the four-way junction structure, it may be able to adopt a 

conformation in which the ACAGAGA loop and the U80 are in close proximity (Figure 

3.1D)28,9,29-30. However, because the triple interactions mainly occur between the AGC 

triad and a third strand (U80, G52 and A53) and the base-paring partner of AGC triad 

(G86-U88 in U6 or G21-U23 in U2) does not directly participate in the interactions. So 

we cannot totally rule out the possibility that the AGC forms a triplex in the form of helix 

IB. It is possible the base triples form during both steps of splicing and play pivotal 

structural and functional role in catalysis, similar to proposed role of base triples of group 

II intron17,31. Interestingly, both in the group II intron and spliceosomal snRNA U2/U6, 

the catalytic triad AGC is highly sensitive to mutations, while their base paring partners 

only lead to minor defects in splicing32,33.  

It is highly possible that spliceosomal proteins are able to stabilize the U6 ISL and 

base triples in vivo. For example, prp8 has been shown to interact extensively with 

snRNAs in the active core and is required for catalysis. This leads to the hypothesis that 

both RNA and protein components of spliceosome are involved directly in catalysis34. 

Proteins that bind U6 and are essential for the first step of splicing, for example Cwc 25, 

may stabilize the triple helix in vivo
35. 

In this thesis work, I only tested the structural dynamics of protein free U2/U6 

complex. However, it is more interesting to observe the dynamics of U2/U6 in the whole 

spliceosome. The more than 70 proteins in the spliceosome may interact with the U2/U6 

and change the structural dynamics. Dr. Amanda Solem is working on this in the lab now. 
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She obtained the splicing extract from yeast and replaced the native U6 of the 

spliceosome with Cy3-Cy5 labeled U6. She observed very interesting dynamics of U6 in 

spliceosome. This approach has great potential to understanding the structural dynamics 

of snRNAs and the assembly of the spliceosome under a biological relevant condition. It 

is interesting to test with this approach that whether the structural dynamics I observed 

with protein-free U2/U6 is also exist in the spliceosome. It is also very important to test 

the mutations that affect the folding dynamics of protein U2/U6 in the whole spliceosome 

to further link the dynamics of U2/U6 to the splicing reaction.  

 There are a large number of proteins in the spliceosome that play vital structural 

and catalytic roles3,36. RNA Chaperones, like Prp24, help the structural rearrangements of 

spliceosomal snRNAs37,38. The spliceosomal protein Prp24 is an essential component of 

the U6 snRNP in yeast and helps U6 to remodel during assembly and catalysis of the 

spliceosome39,40. We report single molecule FRET data showing that spliceosomal 

protein Prp24 can induce a conformational change in U2/U6 complex. This RNA:protein 

interaction is Mg2+ and protein concentration dependent. I also proposed a mechanism by 

which Prp24 modulates the structural dynamics of U2/U6.  

Mg2+ ions help the binding of Prp24 to U2/U6, but in contrast, Prp24 inhibits the 

binding Mg2+. The Mg2+ binding sites have been proposed in the highly conserved 

regions, the ACAGAGA loop, AGC triad and U8018,41,42,25, overlapping with binding 

sites of Prp2443,44. Prp24 may bind these regions and inhibit binding of incoming Mg2+ 

ions. 

Prp24 has been shown to be able to anneal U4 and U6 to form a complex38,37. A 

recent NMR study with a segment of U6 and RRM2 of Prp24 revealed possible binding 
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sites of Prp24 in U643. In the resulting model, RRM2 of Prp24 binds the GAGA box in 

the ACAGAG loop in a sequence-specific fashion and RRM1 interacts with U6 via 

charge-charge interactions. Binding of Prp24 may be able to unwind part of the internal 

helix of U6 snRNA and expose bases for annealing with U443. According to that model 

and our single molecule data, we proposed a mechanism by which Prp24 modulates the 

structural dynamics of U2/U6. As described in Chapter 3, with low concentration of 

Mg2+, there are base triples that stabilize the high FRET state. Prp24 RRM1 and RRM2 

bind the nucleotides that participate in the base triples (G52, A53 and AGC triad) and the 

binding of Prp24 may protect these nucleotides and disrupt the base triples and the high 

FRET state. At the same time, helix Ia and part of the U6 ISL may be unwound and this 

partial open conformation of U2/U6 may correspond to the intermediate FRET state 

observed. The opening of the U6 ISL facilitates the formation of helix IB and Prp24 may 

stay bound after the formation of three-helix structure with helix IB, stabilizing it form 

going back to the intermediate state and high FRET state. This may explain why with low 

concentrations of Prp24, the intermediate state becomes less defined. If the protein 

dissociates form U2/U6 before annealing, the partial open complex may adopt random 

conformations. In addition, low FRET state is less populated and also become less 

defined with low concentration of Prp24, suggesting that the binding of Prp24 stabilizes 

this conformation. 

It has been shown that the first RRMs of Prp24, RRM1 and RRM2, are important 

for high affinity binding of Prp24 to U6 snRNA and the function of RRM3 and RRM4 is 

unclear. It is possible that RRM3 and RRM4 are able to bind U2 and stabilize the 

complex formed between U2 and U6. The reason why Prp24 prefers to stabilize the 
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three-way helix structure of U2/U6 may be that binding of Prp24 disrupts the base-triple 

interactions that stabilize the four–way helix structure. Furthermore, we showed evidence 

that destabilizing of the base triples may favor the formation of intermediate state and 

enable the transitions to the three-way helix conformation in Chapter 3. Many functions 

of Prp24 have been suggested and proposed, including annealing and unwinding of 

U4/U643,37,38, modulating the structural dynamics of the U2/U6. To conduct these 

multiple functions that are sometimes conflicting with each other, there must be some 

regulation mechanism for Prp24 function. Lsm proteins interact with Prp24 and enhance 

the annealing of U4/U645,46,47. In addition, other spliceosomal protein factors, especially 

regulation factors, may modulate the function of Prp24 at different stages of splicing. 

According to genetic studies, Prp24 promotes the annealing of U4/U637,38. 

Structural studies with full length and truncated U6 and Prp24 revealed the possible 

binding sites of Prp24 to U639,44. More recently, NMR studies revealed the sequence-

specific binding of RRM2 of Prp24 and proposed that Prp24 can open partially the U6 

ISL to facilitate the annealing of U4/U6. Because U2/U6 is believed to be the catalytic 

core of the spliceosome and Prp24 is an essential component of U6 snRNP40,7, we 

hypothesize that Prp24 also play an important role in modulating the structural dynamics 

of U2/U6. Our bulk and single molecule data is consistent with this idea. Prp24 may bind 

U6 in similar binding sites revealed by pervious studies and stabilize the three-way 

junction by a similar mechanism proposed according to the NMR study43 (Figure 4.6). 

To further test this model, more experiments are performing in the lab now by 

,-./0./1! 2./.3455316.. She is testing the binding of Prp24 with U6 only. This 

experiment is able to reveal that whether Prp24 modulates the conformational change of 
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U2/U6 or unwinds the U2 from U6. In addition, Prp24 titrations to U2/U6 with various 

Prp24 concentrations are conducting in the lab. The single molecule KD and more details 

about the binding of Prp24 to U2/U6 will be obtained. More bulk titrations with various 

concentrations of Prp24 and Mg2+ should be conducted to further understand the effect of 

Prp24 on Mg2+ binding. Furthermore, the effect of mutant Prp24 constructs (deletion of 

one or more RRMs), like Prp24 234C, N123, 23 and 12, on the folding dynamics of 

U2/U6 will be tested to assess the function of each RRM of Prp24. This study will lead to 

an important mechanism by which the Prp24 modulates the structure of U2/U6. 

Part of Chapter 5 is adopted from paper: Guo, Z.; Karunatilaka, K. S.; Rueda, D., 

Single-molecule analysis of protein-free U2-U6 snRNAs. Nat Struct Mol Biol 2009, 16 

(11), 1154-9. 
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Spliceosomes catalyze the maturation of precursor mRNAs in organisms ranging 

from yeast to humans. Their catalytic core comprises three small nuclear RNAs (U2, U5 

and U6) involved in substrate positioning and catalysis. It has been postulated, but never 

shown experimentally, that the U2–U6 complex adopts at least two conformations that 

reflect different activation states. We have used single-molecule fluorescence to probe the 

structural dynamics of a protein-free RNA complex modeling U2–U6 from yeast and 

mutants of highly conserved regions of U2–U6. Our data show the presence of at least 

three distinct conformations in equilibrium. The minimal folding pathway consists of a 

two-step process with an obligatory intermediate. The first step is strongly magnesium 

dependent, and we provide evidence suggesting that the second step corresponds to the 

formation of the genetically conserved helix IB. Site-specific mutations in the highly 

conserved AGC triad and the U80 base in U6 suggest that the observed conformational 

dynamics correlate with residues that have an important role in splicing. We also report 

the first direct structural evidence that supports the existence of the base triples in the 
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spliceosomal snRNA U2/U6. These interactions were proposed according to a 

corresponding set of base triple interactions discovered in the recent published crystal 

structure of the self-splicing group II intron.19-16, 24b-17, 48 We proposed that these base 

triples existing in the spliceosomal RNA U2/U6 complex are in the same family of the 

ones found in crystal structure of the self-splicing group II intron given the extensive 

similarities between the spliceosome and the group II intron. Our data agree very well 

with the hypothesis. There are a large number of proteins in the spliceosome that play 

vital structural and catalytic roles3,36. RNA Chaperones, like Prp24, help the structural 

rearrangements of spliceosomal snRNAs. We report single molecule FRET data showing 

that spliceosomal protein Prp24 can induce a conformational change in U2/U6 complex. 

This RNA:protein interaction is Mg2+ and protein concentration dependent and inhibits 

the binding of Mg2+ to U2/U6.  
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